论文标题

viwid:利用wifi进行稳健和资源有效的大满贯

ViWiD: Leveraging WiFi for Robust and Resource-Efficient SLAM

论文作者

Arun, Aditya, Hunter, William, Ayyalasomayajula, Roshan, Bharadia, Dinesh

论文摘要

对自主导航和室内应用勘探机器人的最新兴趣刺激了对室内同时定位和映射(SLAM)机器人系统的研究。尽管大多数这些大满贯系统都使用视觉和激光雷达传感器与探针传感器同时使用,但这些探测器传感器会随着时间的流逝而漂移。为了打击这种漂移,视觉大满贯系统部署计算和内存密集型搜索算法来检测“环闭合”,这使得轨迹估算在全球范围内保持一致。为了绕过这些资源(计算和内存)密集算法,我们提出了VIWID,该算法将WiFi和视觉传感器集成在双层系统中。这种双层方法将本地和全局轨迹估计的任务分开,从而使VIWID资源有效,同时实现PAR或更好的性能到最先进的视觉大满贯。我们在四个数据集上演示了Viwid的性能,涵盖了1500 m的遍历路径,并分别显示出4.3倍和4倍的计算和内存消耗量,而最先进的视觉和LIDAR SLAM SLAM系统则具有PAR SLAM性能。

Recent interest towards autonomous navigation and exploration robots for indoor applications has spurred research into indoor Simultaneous Localization and Mapping (SLAM) robot systems. While most of these SLAM systems use Visual and LiDAR sensors in tandem with an odometry sensor, these odometry sensors drift over time. To combat this drift, Visual SLAM systems deploy compute and memory intensive search algorithms to detect `Loop Closures', which make the trajectory estimate globally consistent. To circumvent these resource (compute and memory) intensive algorithms, we present ViWiD, which integrates WiFi and Visual sensors in a dual-layered system. This dual-layered approach separates the tasks of local and global trajectory estimation making ViWiD resource efficient while achieving on-par or better performance to state-of-the-art Visual SLAM. We demonstrate ViWiD's performance on four datasets, covering over 1500 m of traversed path and show 4.3x and 4x reduction in compute and memory consumption respectively compared to state-of-the-art Visual and Lidar SLAM systems with on par SLAM performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源