论文标题

通过可解释的机器学习检查骑车需求决定因素的空间异质性

Examining spatial heterogeneity of ridesourcing demand determinants with explainable machine learning

论文作者

Zhang, Xiaojian, Yan, Xiang, Zhou, Zhengze, Xu, Yiming, Zhao, Xilei

论文摘要

近年来,骑车服务的越来越重要表明,有必要研究骑车需求的关键决定因素。但是,关于骑车需求决定因素的非线性效应和空间异质性,知之甚少。这项研究应用了一个可解释的基于计算的分析框架,以确定塑造骑车需求并在各种空间环境(机场,市区和社区)探索其非线性关联的关键因素。我们在芝加哥使用骑车旅行数据进行经验分析。结果表明,建筑环境的重要性在空间环境中各不相同,并且在预测对机场旅行的乘车需求方面共同贡献了最大的重要性。此外,建筑环境对骑车需求的非线性影响显示出强烈的空间变化。乘车需求通常对市区旅行的建筑环境变化最有反应,然后进行邻里旅行和机场旅行。这些发现提供了运输专业人员的细微见解,以管理骑车服务。

The growing significance of ridesourcing services in recent years suggests a need to examine the key determinants of ridesourcing demand. However, little is known regarding the nonlinear effects and spatial heterogeneity of ridesourcing demand determinants. This study applies an explainable-machine-learning-based analytical framework to identify the key factors that shape ridesourcing demand and to explore their nonlinear associations across various spatial contexts (airport, downtown, and neighborhood). We use the ridesourcing-trip data in Chicago for empirical analysis. The results reveal that the importance of built environment varies across spatial contexts, and it collectively contributes the largest importance in predicting ridesourcing demand for airport trips. Additionally, the nonlinear effects of built environment on ridesourcing demand show strong spatial variations. Ridesourcing demand is usually most responsive to the built environment changes for downtown trips, followed by neighborhood trips and airport trips. These findings offer transportation professionals nuanced insights for managing ridesourcing services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源