论文标题

多转弯的机器阅读理解框架,具有重新思考机制,用于情感对。

A Multi-turn Machine Reading Comprehension Framework with Rethink Mechanism for Emotion-Cause Pair Extraction

论文作者

Zhou, Changzhi, Song, Dandan, Xu, Jing, Wu, Zhijing

论文摘要

情感对对提取(ECPE)是情绪原因分析中的一项新任务,它从情感文档中提取潜在的情感因子对。最近的研究使用端到端方法来应对ECPE任务。但是,这些方法要么患有标签稀疏问题,要么无法模拟情绪与原因之间的复杂关系。此外,他们都不考虑条款的明确语义信息。为此,我们将ECPE任务转换为文档级的机器阅读理解(MRC)任务,并提出了具有重新考虑机制(MM-R)的多转移MRC框架。我们的框架可以模拟情绪和原因之间的复杂关系,同时避免产生配对矩阵(标签稀疏问题的主要原因)。此外,多转弯结构可以融合情绪和原因之间的明确语义信息流。基准情感的广泛实验导致语料库证明了我们提出的框架的有效性,该框架的表现优于现有的最新方法。

Emotion-cause pair extraction (ECPE) is an emerging task in emotion cause analysis, which extracts potential emotion-cause pairs from an emotional document. Most recent studies use end-to-end methods to tackle the ECPE task. However, these methods either suffer from a label sparsity problem or fail to model complicated relations between emotions and causes. Furthermore, they all do not consider explicit semantic information of clauses. To this end, we transform the ECPE task into a document-level machine reading comprehension (MRC) task and propose a Multi-turn MRC framework with Rethink mechanism (MM-R). Our framework can model complicated relations between emotions and causes while avoiding generating the pairing matrix (the leading cause of the label sparsity problem). Besides, the multi-turn structure can fuse explicit semantic information flow between emotions and causes. Extensive experiments on the benchmark emotion cause corpus demonstrate the effectiveness of our proposed framework, which outperforms existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源