论文标题

分区函数渐近扩展的误差界限

Error bounds for the asymptotic expansion of the partition function

论文作者

Banerje, Koustav, Paule, Peter, Radu, Cristian-Silviu, Schneider, Carsten

论文摘要

关于分区功能的渐近研究$ P(n)$始于Hardy和Ramanujan的工作。后来,拉德马赫(Rademacher)获得了$ p(n)$的收敛系列,莱默(Lehmer)给出了错误。尽管有此功能,但尚不清楚带有明显错误的$ P(n)$的完整渐近扩展。最近,奥沙利文研究了$ p^{k}(n)$的渐近扩展,分别为$ k $ th powers,由赖特(Wright)发起,因此获得了$ p(n)$的渐近扩展,以及对扩展涉及的系数的简洁描述,但没有任何错误术语的估计。在这里,我们考虑了对通过在任何正整数$ n $上截断$ p(n)$的渐近扩展获得的错误项的估计估算的详细和全面分析。这引起了$ p(n)$的无限不平等家庭,最终回答了陈提出的问题。我们的错误项估计主要依赖于符号总和的算法方法的应用。

Asymptotic study on the partition function $p(n)$ began with the work of Hardy and Ramanujan. Later Rademacher obtained a convergent series for $p(n)$ and an error bound was given by Lehmer. Despite having this, a full asymptotic expansion for $p(n)$ with an explicit error bound is not known. Recently O'Sullivan studied the asymptotic expansion of $p^{k}(n)$-partitions into $k$th powers, initiated by Wright, and consequently obtained an asymptotic expansion for $p(n)$ along with a concise description of the coefficients involved in the expansion but without any estimation of the error term. Here we consider a detailed and comprehensive analysis on an estimation of the error term obtained by truncating the asymptotic expansion for $p(n)$ at any positive integer $n$. This gives rise to an infinite family of inequalities for $p(n)$ which finally answers to a question proposed by Chen. Our error term estimation predominantly relies on applications of algorithmic methods from symbolic summation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源