论文标题

波兰空间和Halpern和Läuchli定理的产品的着色原理

The coloring principle for the product of polish spaces and the Halpern and Läuchli's theorem

论文作者

Stefanović, Nedeljko

论文摘要

在ARXIV中:2209.04859 Andy Zucker和Chris Lambie-Hanson证明了波兰空间产品的某些着色原理的一致性结果,最多可计入许多颜色。这个原则容易意味着Halpern和Läuchli的定理。本文的目的是对属性的一致性结果,对基数的颜色集小于$ 2^{\ aleph_0} $。此处提供的证明与Arxiv:2209.04859中的证明不同。

In arXiv:2209.04859 Andy Zucker and Chris Lambie-Hanson proved the consistency result for some coloring principle for the products of polish spaces by at most countable many colors. This principle easy implies Halpern and Läuchli's theorem. The aim of this paper is to generaliza this consistency result to sets of colors of cardinality less than $2^{\aleph_0}$. The proof presented here differs than the proof presented in arXiv:2209.04859.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源