论文标题
针对域自适应语义细分的审议的领域桥接
Deliberated Domain Bridging for Domain Adaptive Semantic Segmentation
论文作者
论文摘要
在无监督的域适应性(UDA)中,直接适应从源到目标域的适应通常会遭受明显的差异,并导致对齐不足。因此,许多UDA工作试图通过各种中间空间逐渐和轻柔地消失域间隙,这些空间被称为域桥接(DB)。但是,对于诸如域自适应语义细分(DASS)之类的密集预测任务,现有解决方案主要依赖于粗糙的样式转移以及如何优雅地桥接域的优雅桥接。在这项工作中,我们求助于数据混合,以建立用于DASS的经过经过经过经过讨论的域桥接(DDB),通过该域,源和目标域的联合分布与中间空间中的每个分布进行对齐和相互作用。 DDB的核心是双记录域桥接步骤,用于使用粗糙和精细的数据混合技术生成两个中间域,以及一个跨路径知识蒸馏步骤,用于采用两个互补的模型,对生成的中间样品进行了培训,作为“老师”以“教师”为“高级学生”,以在多人访问者的“多人”中开发出色的“学生”。这两个优化步骤以交替的方式起作用,并相互加强以具有强大的适应能力引起DDB。对具有不同设置的自适应分割任务进行的广泛实验表明,我们的DDB显着超过了最先进的方法。代码可从https://github.com/xiaoachen98/ddb.git获得。
In unsupervised domain adaptation (UDA), directly adapting from the source to the target domain usually suffers significant discrepancies and leads to insufficient alignment. Thus, many UDA works attempt to vanish the domain gap gradually and softly via various intermediate spaces, dubbed domain bridging (DB). However, for dense prediction tasks such as domain adaptive semantic segmentation (DASS), existing solutions have mostly relied on rough style transfer and how to elegantly bridge domains is still under-explored. In this work, we resort to data mixing to establish a deliberated domain bridging (DDB) for DASS, through which the joint distributions of source and target domains are aligned and interacted with each in the intermediate space. At the heart of DDB lies a dual-path domain bridging step for generating two intermediate domains using the coarse-wise and the fine-wise data mixing techniques, alongside a cross-path knowledge distillation step for taking two complementary models trained on generated intermediate samples as 'teachers' to develop a superior 'student' in a multi-teacher distillation manner. These two optimization steps work in an alternating way and reinforce each other to give rise to DDB with strong adaptation power. Extensive experiments on adaptive segmentation tasks with different settings demonstrate that our DDB significantly outperforms state-of-the-art methods. Code is available at https://github.com/xiaoachen98/DDB.git.