论文标题
可扩展任务驱动的机器人群通过避免碰撞和学习平均场控制
Scalable Task-Driven Robotic Swarm Control via Collision Avoidance and Learning Mean-Field Control
论文作者
论文摘要
近年来,强化学习及其多代理类似物在解决各种复杂控制问题方面取得了巨大的成功。然而,在其理论分析和算法的经验设计中,多机构的增强学习仍然具有挑战性,尤其是对于大量的体现的机器人剂,在这些机器人链中仍然是确定的工具链仍然是积极研究的一部分。我们使用新兴的最先进的均值控制技术,以将多代理群控制转换为更古典的单药对分布的控制。这允许从单位强化学习的进步中获利,以假设代理之间的相互作用较弱。但是,平均场模型被带有体现的,物理碰撞的代理的真实系统的性质违反。因此,我们将避免碰撞和对平均场控制的学习结合到一个统一设计智能机器人群行为的统一框架。从理论方面来说,我们为连续空间和避免碰撞的一般平均场控制提供了新颖的近似保证。从实际方面来说,我们表明我们的方法的表现优于多代理增强学习,并允许在模拟和真实无人机群中避免碰撞的同时进行分散的开环应用程序。总体而言,我们为群体行为设计框架提出了一个框架,该框架既有数学上有充分的基础,而且实际上有用,从而实现了原本棘手的群问题的解决方案。
In recent years, reinforcement learning and its multi-agent analogue have achieved great success in solving various complex control problems. However, multi-agent reinforcement learning remains challenging both in its theoretical analysis and empirical design of algorithms, especially for large swarms of embodied robotic agents where a definitive toolchain remains part of active research. We use emerging state-of-the-art mean-field control techniques in order to convert many-agent swarm control into more classical single-agent control of distributions. This allows profiting from advances in single-agent reinforcement learning at the cost of assuming weak interaction between agents. However, the mean-field model is violated by the nature of real systems with embodied, physically colliding agents. Thus, we combine collision avoidance and learning of mean-field control into a unified framework for tractably designing intelligent robotic swarm behavior. On the theoretical side, we provide novel approximation guarantees for general mean-field control both in continuous spaces and with collision avoidance. On the practical side, we show that our approach outperforms multi-agent reinforcement learning and allows for decentralized open-loop application while avoiding collisions, both in simulation and real UAV swarms. Overall, we propose a framework for the design of swarm behavior that is both mathematically well-founded and practically useful, enabling the solution of otherwise intractable swarm problems.