论文标题

使用人关键点检测的在线无标记外部摄像机校准

Online Marker-free Extrinsic Camera Calibration using Person Keypoint Detections

论文作者

Pätzold, Bastian, Bultmann, Simon, Behnke, Sven

论文摘要

多相机系统的校准,即确定相机之间的相对姿势,是计算机视觉和机器人技术中许多任务的先决条件。通常使用使用棋盘校准目标的离线方法来实现摄像头校准。但是,考虑到每次相机姿势变化时都需要进行新的校准,这些方法通常通常很麻烦且冗长。在这项工作中,我们提出了一种无标记的在线方法,用于对多个智能边缘传感器的外部校准进行外部校准,仅依赖于2D人关键点检测,这些检测是从RGB摄像机图像中本地计算出的。我们的方法假定要知道的固有摄像头参数,并且需要对相机姿势进行粗略的初始估计进行启动。从中央后端收到了来自多个视图的人关键点检测,并将其同步,过滤和分配给人假设。我们使用这些人假设以因子图的形式反复解决优化问题。考虑到对遍及场景的一个或多个人的合适观察,估计的相机姿势在几分钟内将相干的外部校准汇聚在一起。我们在现实世界中评估了我们的方法,并表明使用传统校准目标与离线方法产生的参考校准相比,使用我们方法的校准实现了较低的再生误差。

Calibration of multi-camera systems, i.e. determining the relative poses between the cameras, is a prerequisite for many tasks in computer vision and robotics. Camera calibration is typically achieved using offline methods that use checkerboard calibration targets. These methods, however, often are cumbersome and lengthy, considering that a new calibration is required each time any camera pose changes. In this work, we propose a novel, marker-free online method for the extrinsic calibration of multiple smart edge sensors, relying solely on 2D human keypoint detections that are computed locally on the sensor boards from RGB camera images. Our method assumes the intrinsic camera parameters to be known and requires priming with a rough initial estimate of the camera poses. The person keypoint detections from multiple views are received at a central backend where they are synchronized, filtered, and assigned to person hypotheses. We use these person hypotheses to repeatedly solve optimization problems in the form of factor graphs. Given suitable observations of one or multiple persons traversing the scene, the estimated camera poses converge towards a coherent extrinsic calibration within a few minutes. We evaluate our approach in real-world settings and show that the calibration with our method achieves lower reprojection errors compared to a reference calibration generated by an offline method using a traditional calibration target.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源