论文标题
Landau的渐近学 - okhotin功能
Asymptotics of Landau--Okhotin function
论文作者
论文摘要
Landau函数$ g(n)$是几个正整数中的最大倍数,总和不超过$ n $。在其他假设中,这些数字是分离二线算术进程的差异,最大值表示$ \ tilde {g}(n)$,它是由Okhotin引入的。我们发现$ \ tilde {g}(n)$的敏锐对数渐近学。
Landau function $g(n)$ is the maximal possible least common multiple of several positive integers with sum not exceeding $n$. Under additional assumptions that these numbers are the differences of disjoint bi-infinite arithmetic progressions the maximum is denoted $\tilde{g}(n)$, it was introduced by Okhotin. We find a sharp logarithmic asymptotics of $\tilde{g}(n)$.