论文标题

双层物理信息的神经网络,用于使用Broyden的高度降级的PDE约束优化

Bi-level Physics-Informed Neural Networks for PDE Constrained Optimization using Broyden's Hypergradients

论文作者

Hao, Zhongkai, Ying, Chengyang, Su, Hang, Zhu, Jun, Song, Jian, Cheng, Ze

论文摘要

基于深度学习的方法,例如物理知识的神经网络(PINN)和DEADONETS已显示出解决PDE约束优化(PDECO)问题的希望。但是,现有方法不足以处理对优化目标具有复杂或非线性依赖性的PDE约束。在本文中,我们提出了一个新颖的双层优化框架,以通过将目标和约束的优化解耦来解决挑战。对于内部循环优化,我们采用PINN仅解决PDE约束。对于外循环,我们通过基于隐式函数定理(IFT)使用Broyden的方法来设计一种新的方法,该方法对于近似高gratient剂而言是有效且准确的。我们进一步介绍了高度级计算的理论解释和错误分析。在多个大规模和非线性PDE约束优化问题上进行了广泛的实验表明,与强基础相比,我们的方法可实现最先进的结果。

Deep learning based approaches like Physics-informed neural networks (PINNs) and DeepONets have shown promise on solving PDE constrained optimization (PDECO) problems. However, existing methods are insufficient to handle those PDE constraints that have a complicated or nonlinear dependency on optimization targets. In this paper, we present a novel bi-level optimization framework to resolve the challenge by decoupling the optimization of the targets and constraints. For the inner loop optimization, we adopt PINNs to solve the PDE constraints only. For the outer loop, we design a novel method by using Broyden's method based on the Implicit Function Theorem (IFT), which is efficient and accurate for approximating hypergradients. We further present theoretical explanations and error analysis of the hypergradients computation. Extensive experiments on multiple large-scale and nonlinear PDE constrained optimization problems demonstrate that our method achieves state-of-the-art results compared with strong baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源