论文标题
Kepler-444系统的全局动态和体系结构
Global dynamics and architecture of the Kepler-444 system
论文作者
论文摘要
S型行星是多星系的一个组成部分绕着行星形成和进化模型的强大限制。一个值得注意的案例研究是Kepler-444,这是一个三星级系统,其主要是由紧凑型配置的五个行星绕的五个行星绕,并且在高度偏心轨道上,恒星二元伴侣围绕主要的二元伴侣旋转。访问最精确的最新质量和轨道参数对于了解形成和进化过程非常有价值。我们提供了对该系统的第一个完整的动态探索,其目标是完善这些参数。 行星系统均未出现在低阶的两个或三个行星平均动作共振(MMR)中。我们使用一种使用方法来利用基本频率(NAFF)快速混乱指示器的数值分析的方法,为行星和恒星二进制伴侣提供最精确的效率动力学参数。后者的轨道受到了员工和盖亚的新观察以及稳定性分析的限制。此更新进一步挑战了行星形成过程。我们还测试了系统中第六行星的动力学合理性,此前在哈勃太空望远镜(HST)数据中观察到的提示。我们发现,这个推定的行星可能存在于广泛的质量中,并且轨道周期大约在12到20天之间。 我们注意到该系统与短期轨道稳定性的总体一致性。这表明可以在多星系中找到各种各样的行星系统体系结构,这可能进一步挑战行星形成模型。
S-type planets, which orbit one component of multiple-star systems, place strong constraints on the planet formation and evolution models. A notable case study is Kepler-444, a triple-star system whose primary is orbited by five planets smaller than Venus in a compact configuration, and for which the stellar binary companion revolves around the primary on a highly eccentric orbit. Having access to the most precise up-to-date masses and orbital parameters is highly valuable to understand formation and evolution processes. We provide the first full dynamical exploration of this system, with the goal to refine those parameters. The planetary system does not appear in any of low-order two or three-planet mean-motion resonances (MMR). We provide the most precise up-to-date dynamical parameters for the planets and the stellar binary companion, using an approach that makes use of the Numerical Analysis of Fundamental Frequencies (NAFF) fast chaos indicator. The orbit of the latter is constrained by new observations from HIRES and Gaia, and also by the stability analysis. This update further challenges the planets formation processes. We also test the dynamical plausibility of a sixth planet in the system, following hints observed in the Hubble Space Telescope (HST) data. We find that this putative planet could exist over a broad range of masses, and with an orbital period roughly comprised between 12 and 20 days. We note an overall good agreement of the system with short-term orbital stability. This suggests that a diverse range of planetary system architectures could be found in multiple-star systems, potentially further challenging the planet formation models.