论文标题
线性和表面数据的一致性:道路数据示例的方法论建议
Coherence of linear and surface data: Methodological proposal from the example of road data
论文作者
论文摘要
现实世界及其地理对象在不同的空间数据库中进行了建模和表示。这些数据库中的每一个仅提供所示地理对象的部分描述(在时空和时间上)。有时,数据库的生产者和用户需要将其中的几个连接到更新或比较。空间数据库管理中的许多工作都集中在匹配这些空间数据库,更特别的网络数据库,例如道路网络。关于网络数据,一种情况仍然忽略了,将线性数据库(带有polylines对象)与表面数据库(带有多边形对象)匹配的情况。无论如何,用户还需要连接这两种类型的空间数据库。在本文中,使用法国例子(巴黎附近的Cachan)以及国际案例研究(法国的波尔多,加拿大的维多利亚州和丹麦的哥本哈根)进行了案例研究,以提出一种方法,旨在使两个不同的参考框架(线性和表面)在两个不同的参考框架中进行连贯的网络地理对象。此问题通过道路数据的示例解决。然后对表面数据进行形式化,以使其适应描述相同地理对象的线性数据。最后,表面数据中的多边形对应于线性数据中的单个多线线。这种一致性应简化信息从一个参考框架(线性或表面)到另一个参考框架的传输。换句话说,开发的方法旨在使线性和地理数据相互作用。
The real world and its geographic objects are modeled and represented in different spatial databases. Each of these databases provides only a partial description (in space and time) of the geographic objects represented. Sometimes, producers and users of databases need to connect several of them for updates or comparisons. Much of the work in spatial database management focuses on matching these spatial databases and more particularly network databases, such as road networks. With regard to network data, one situation remains neglected, that of matching a linear database (with polylines objects) with a surface database (with polygons objects). In any case, users also need to connect these two types of spatial database. In this paper, a case study is made using French examples (Cachan, near Paris), as well as international case studies (Bordeaux in France, Victoria in Canada, and Copenhagen in Denmark), to propose an approach intended to make coherent network geographical objects in two different reference frames (linear and surface). This issue is addressed here through the example of road data. The surface data are then formalized in order to adapt them to linear data describing the same geographical objects. In the end, a polygon in the surface data corresponds to a single polyline in the linear data. This consistency should simplify the transfer of information from one reference frame (linear or surface) to the other. In other words, the methodology developed aims to make linear and surfacegeographic data interoperable.