论文标题
Picsecond时尺度的电阻切换实时监控
Picosecond Time-Scale Resistive Switching Monitored in Real-Time
论文作者
论文摘要
可以通过在导丝的活性区域中仅重新定位少数原子来调整丝状备忘录的电阻状态。因此,该技术不仅具有其最终的缩减潜力和能源效率,而且还具有前所未有的速度。然而,高频应用的突破仍然需要澄清超快速电阻转换的主要机制和固有的局限性。在这里,我们研究了基于五秒钟的时间分辨率的基于坦塔列汀的五氧化五氧化物的复员中的双极,多级电阻开关。我们通过实验表明,由于极性交替的20 ps长电压脉冲,循环电阻转换操作。通过对Memristor的实时响应的分析,我们发现设定的切换可以在Picsecond Time尺度上进行,在这种情况下,只能因实验设置的带宽限制而妥协。相比之下,重置过渡的完成显着超过了超短电压偏置的持续时间,这表明了热扩散的主要作用,并强调了专用的热工程对于未来的高频磁性磁带电路应用的重要性。
The resistance state of filamentary memristors can be tuned by relocating only a few atoms at interatomic distances in the active region of a conducting filament. Thereby the technology holds promise not only in its ultimate downscaling potential and energy efficiency but also in unprecedented speed. Yet, the breakthrough in high-frequency applications still requires the clarification of the dominant mechanisms and inherent limitations of ultra-fast resistive switching. Here we investigate bipolar, multilevel resistive switchings in tantalum pentoxide based memristors with picosecond time resolution. We experimentally demonstrate cyclic resistive switching operation due to 20 ps long voltage pulses of alternating polarity. Through the analysis of the real-time response of the memristor we find that the set switching can take place at the picosecond time-scale where it is only compromised by the bandwidth limitations of the experimental setup. In contrast, the completion of the reset transitions significantly exceeds the duration of the ultra-short voltage bias, demonstrating the dominant role of thermal diffusion and underlining the importance of dedicated thermal engineering for future high-frequency memristor circuit applications.