论文标题

自然语言推理提示在跨语料库中的文本中进行零拍情感分类

Natural Language Inference Prompts for Zero-shot Emotion Classification in Text across Corpora

论文作者

Plaza-del-Arco, Flor Miriam, Martín-Valdivia, María-Teresa, Klinger, Roman

论文摘要

在文本情感分类中,相关标签的集合取决于域和应用程序方案,并且在模型开发时可能不知道。这与需要预定义的标签的经典学习学习范式相抵触。获得具有灵活标签的模型的解决方案是,将零局学习的范式用作自然语言推理任务,此外,它还增加了不需要任何标记的培训数据的优势。这就提出了一个问题,如何促使自然语言推断模型进行零击学习情绪分类。及时表述的选项包括单独的情感名称愤怒或“此文本表示愤怒”的陈述。在本文中,我们分析了对基于自然语言的零射击分类器的敏感性是对正在考虑的提示的这种更改的敏感性:需要选择提示的提示如何?我们使用三种自然语言推断模型根据不同来源(推文,事件,博客)呈现不同语言寄存器的一组既定的情感数据集进行实验,并表明确实选择了特定及时配方的选择需要适合语料库。我们表明,可以通过多个提示的组合来应对这一挑战。这种合奏在整个语料库中比单个提示更强大,并且与个人最佳提示的表现几乎相同。

Within textual emotion classification, the set of relevant labels depends on the domain and application scenario and might not be known at the time of model development. This conflicts with the classical paradigm of supervised learning in which the labels need to be predefined. A solution to obtain a model with a flexible set of labels is to use the paradigm of zero-shot learning as a natural language inference task, which in addition adds the advantage of not needing any labeled training data. This raises the question how to prompt a natural language inference model for zero-shot learning emotion classification. Options for prompt formulations include the emotion name anger alone or the statement "This text expresses anger". With this paper, we analyze how sensitive a natural language inference-based zero-shot-learning classifier is to such changes to the prompt under consideration of the corpus: How carefully does the prompt need to be selected? We perform experiments on an established set of emotion datasets presenting different language registers according to different sources (tweets, events, blogs) with three natural language inference models and show that indeed the choice of a particular prompt formulation needs to fit to the corpus. We show that this challenge can be tackled with combinations of multiple prompts. Such ensemble is more robust across corpora than individual prompts and shows nearly the same performance as the individual best prompt for a particular corpus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源