论文标题

吉尔德纳·温伯格(Gildener-Weinberg

The Gildener-Weinberg two-Higgs doublet model at two loops

论文作者

Eichten, Estia J., Lane, Kenneth

论文摘要

Gildener-Weinberg两-higgs Doublet型号(GW-2HDM)提供了自然轻巧的希格斯玻色子,$ h = h(125)$。它已经在其有效潜力的一环近似中进行了研究,即$ v_1 $。一个重要的结果是,该模型的BSM Higgs玻色子($ h',a,h^\ pm $)的质量受“总和规则” $ \ left(m_ {h'}^4 + m_a^4 + m_a^4 + 2m_ + 2m_ {h^\ pm}^4 \ right)尽管它们符合LHC的范围,但搜索它们已被大型QCD背景所困扰。另一个结果是,$ h $高度对齐,即$ h $ - $ h'$混合很小,$ h $仅具有标准型号耦合。这种对齐的推论是,搜索模式,例如$ h',\,a \ leftrightArrow w^+w^ - ,\,\,zz,\,\,hz $和$ h^\ pm \ leftrightArrow w^\ pm z,\ p z,\,w^\ pm h $。为了评估总和规则的准确性和HIGGS对准的准确性,我们将在两个循环中研究该模型。通过拥有许多新的贡献,该计算变得复杂。我们提出了两个公式,以计算$ h $ - $ h'$ ass矩阵,其特征向量$ h_1,\,h_2 $和质量$ m_ {h_2} $,同时修复$ m_ {h_1} = 125 \,{\ rm gev} $。它们与一环结果相同。要求$ m_a = m_ {h^\ pm} $,我们找到$ 180 \,{\ rm gev} <m_ {a,h^\ pm} <380 $ - $ 425 \,{\ rm gev} 125 \,{\ rm gev} $,$ m_ {h_2} $减少为$ m_ {a,h^\ pm} $增加。对$ h $ - 对齐的更正低于$ {\ cal {o}}(1 \%)$。因此,上面的BSM搜索将保持毫无结果。找到BSM希格斯需要提高对低质量的敏感性。我们讨论了两个可能的搜索。

The Gildener-Weinberg two-Higgs doublet model (GW-2HDM) provides a naturally light and aligned Higgs boson, $H = H(125)$. It has been studied in the one-loop approximation of its effective potential, $V_1$. An important consequence is that the masses of the model's BSM Higgs bosons ($H',A,H^\pm$) are bounded by the sum rule $\left(M_{H'}^4 + M_A^4 + 2M_{H^\pm}^4\right)^{1/4} = 540\,{\rm GeV}$. Although they are well within reach of the LHC, searches for them have been stymied by large QCD backgrounds. Another consequence is that $H$ is highly aligned, i.e., $H$--$H'$ mixing is small and $H$ has only Standard Model couplings. A corollary of this alignment is that search modes such as $H',\,A \leftrightarrow W^+W^-,\,ZZ,\,HZ$ and $H^\pm \leftrightarrow W^\pm Z,\,W^\pm H$ are greatly suppressed. To assess the accuracy of the sum rule and Higgs alignment, we study this model in two loops. This calculation is complicated by having many new contributions. We present two formulations of it to calculate the $H$--$H'$ mass matrix, its eigenvectors $H_1,\,H_2$, and the mass $M_{H_2}$ while fixing $M_{H_1}= 125\,{\rm GeV}$. They give similar results, in accord with the one-loop results. Requiring $M_A = M_{H^\pm}$, we find $180\,{\rm GeV} < M_{A,H^\pm} < 380$--$425\,{\rm GeV}$ and $550$--$700\,{\rm GeV} > M_{H_2} > 125\,{\rm GeV}$, with $M_{H_2}$ decreasing as $M_{A,H^\pm}$ increase. The corrections to $H$-alignment are below ${\cal{O}}(1\%)$. So, the BSM searches above will remain fruitless. Finding the BSM Higgses requires improved sensitivity to their low masses. We discuss two possible searches for this.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源