论文标题
关于Riesz类型的不平等,硬木材类型定理和平滑模量
On Riesz type inequalities, Hardy-Littlewood type theorems and smooth moduli
论文作者
论文摘要
本文的目的是开发一些研究Riesz型不平等,硬木型定理以及在高维病例中的全体形态,pluriharmonic和谐波功能的平滑模量的方法。最初,我们证明了一些尖锐的Riesz型不平等,对有限的对称域上的pluriharmonic函数。获得的结果扩展了(\ textit {trans。Amer。Math。Soc。} {\ BF 372}(2019)〜4031--4051)中的主要结果。此外,还建立了约翰域上的一些hollomorthic和pluriharmonic功能的一些硬木型定理。此外,我们还讨论了Holomorthic,pluriharmonic和谐波功能的耐铁木材定理和平滑模量。因此,我们在(\ textIt {acta Math。} {\ bf 178}(1997)〜143--167)和(\ textit {adv。Math.} {\ bf 187}(2004)(2004)(2004)〜146---172中,我们改善和推广相应的结果。
The purpose of this paper is to develop some methods to study Riesz type inequalities, Hardy-Littlewood type theorems and smooth moduli of holomorphic, pluriharmonic and harmonic functions in high-dimensional cases. Initially, we prove some sharp Riesz type inequalities of pluriharmonic functions on bounded symmetric domains. The obtained results extend the main results in (\textit{Trans. Amer. Math. Soc.} {\bf 372} (2019)~ 4031--4051). Furthermore, some Hardy-Littlewood type theorems of holomorphic and pluriharmonic functions on John domains are established. Additionally, we also discuss the Hardy-Littlewood type theorems and smooth moduli of holomorphic, pluriharmonic and harmonic functions. Consequently, we improve and generalize the corresponding results in (\textit{Acta Math.} {\bf 178} (1997)~ 143--167) and (\textit{Adv. Math.} {\bf 187} (2004)~ 146--172).