论文标题
分布式多机器人障碍物通过基于地图的对数深度强化学习避免
Distributed Multi-Robot Obstacle Avoidance via Logarithmic Map-based Deep Reinforcement Learning
论文作者
论文摘要
在多个机器人的拥挤和狭窄方案中制定安全,稳定和高效的避免障碍政策是具有挑战性的。大多数现有研究要么使用集中控制,要么需要与其他机器人进行通信。在本文中,我们提出了一种新型的对数地图深钢筋学习方法,以避免复杂且无通信的多机器人方案。特别是,我们的方法将激光信息转换为对数图。为了提高训练速度和概括性能,我们的政策将在两个专门设计的多机器人方案中进行培训。与其他方法相比,对数图可以更准确地表示障碍,并提高避免障碍的成功率。我们最终在各种模拟和现实情况下评估了我们的方法。结果表明,我们的方法为复杂的多机器人方案和行人场景中的机器人提供了一种更稳定,更有效的导航解决方案。视频可在https://youtu.be/r0esuxe6mze上找到。
Developing a safe, stable, and efficient obstacle avoidance policy in crowded and narrow scenarios for multiple robots is challenging. Most existing studies either use centralized control or need communication with other robots. In this paper, we propose a novel logarithmic map-based deep reinforcement learning method for obstacle avoidance in complex and communication-free multi-robot scenarios. In particular, our method converts laser information into a logarithmic map. As a step toward improving training speed and generalization performance, our policies will be trained in two specially designed multi-robot scenarios. Compared to other methods, the logarithmic map can represent obstacles more accurately and improve the success rate of obstacle avoidance. We finally evaluate our approach under a variety of simulation and real-world scenarios. The results show that our method provides a more stable and effective navigation solution for robots in complex multi-robot scenarios and pedestrian scenarios. Videos are available at https://youtu.be/r0EsUXe6MZE.