论文标题

数据有效的协作分散的热惯性进程

Data-Efficient Collaborative Decentralized Thermal-Inertial Odometry

论文作者

Polizzi, Vincenzo, Hewitt, Robert, Hidalgo-Carrió, Javier, Delaune, Jeff, Scaramuzza, Davide

论文摘要

我们提出了一种系统解决方案,以实现使用热图像和惯性测量的飞行机器人团队的数据效率,分散的状态估计。每个机器人可以独立飞行,并在可能的情况下交换数据以完善其状态估计。我们的系统前端应用在线光度校准以完善热图像,从而增强功能跟踪并放置识别。我们的系统后端使用协方差融合策略来忽略代理之间的互相关,以降低内存使用和计算成本。通信管道使用本地汇总的描述符(VLAD)的向量来构建需要较低带宽使用情况的请求响应策略。我们在合成和现实世界数据上测试我们的协作方法。我们的结果表明,相对于个人代理方法,提出的方法最多可提高46%的轨迹估计,同时降低了多达89%的通信交换。数据集和代码将发布给公众,扩展了已经发布的JPL XVIO库。

We propose a system solution to achieve data-efficient, decentralized state estimation for a team of flying robots using thermal images and inertial measurements. Each robot can fly independently, and exchange data when possible to refine its state estimate. Our system front-end applies an online photometric calibration to refine the thermal images so as to enhance feature tracking and place recognition. Our system back-end uses a covariance-intersection fusion strategy to neglect the cross-correlation between agents so as to lower memory usage and computational cost. The communication pipeline uses Vector of Locally Aggregated Descriptors (VLAD) to construct a request-response policy that requires low bandwidth usage. We test our collaborative method on both synthetic and real-world data. Our results show that the proposed method improves by up to 46 % trajectory estimation with respect to an individual-agent approach, while reducing up to 89 % the communication exchange. Datasets and code are released to the public, extending the already-public JPL xVIO library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源