论文标题
各向异性曲线缩短流的无条件稳定的有限元方案
An unconditionally stable finite element scheme for anisotropic curve shortening flow
论文作者
论文摘要
基于最新的新型参数各向异性曲线缩短流,我们分析了该几何演化方程的完全离散的数值方法。该方法在空间中使用分段线性有限元,并且时间是向后的欧拉近似。我们建立了离散解决方案的存在和独特性以及无条件的稳定性。一些数值计算证实了理论结果并证明了我们方法的实用性。
Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.