论文标题
电阻MHD模拟中的积聚圆盘回流
Accretion disc backflow in resistive MHD simulations
论文作者
论文摘要
我们研究了幼体恒星物体的大小,旋转速率和磁偶极子的中心恒星的积聚,以研究盘内外流体的流动模式(速度和密度)。我们对薄薄的$α$ discs进行电阻MHD模拟,改变了参数,例如恒星旋转速率和磁场,以及(异常)盘中粘度和电阻率的系数。为了为结果提供基准并与已知的分析结果进行比较,我们还针对同一问题执行了纯流体动力模拟(HD)。尽管对于不同的内部边界条件的不同情况获得,但HD模拟中的圆盘结构遵循Kluisniak和Kita(2000)的分析解决方案,特别是根据粘度参数,尤其是“中平面”回流的区域。在MHD溶液中,每当磁性PRANDTL数不超过某个临界值时,中平面回流就会在整个积聚盘中存在,并一直延伸至内部过渡区,该区域将盘向磁漏斗流过渡到磁盘。对于接近临界值的磁性prandtl数的值,回流和内盘会经历准静脉径向振荡,否则回流稳定,圆盘溶液也是如此。从我们对文献的阅读中补充的结果来看,我们得出结论,中平面回流是至少某些积聚光盘的真实特征,无论是HD $α$ -DISCS还是MHD光盘,包括由MRI湍流驱动的碟片。
We investigate accretion onto a central star, with the size, rotation rate, and magnetic dipole of a young stellar object, to study the flow pattern (velocity and density) of the fluid within and outside of the disc. We perform resistive MHD simulations of thin $α$-discs, varying the parameters such as the stellar rotation rate and magnetic field, and (anomalous) coefficients of viscosity and resistivity in the disc. To provide a benchmark for the results and to compare with known analytic results, we also perform purely hydrodynamic simulations (HD) for the same problem. Although obtained for a different situation with differing inner boundary condition, the disc structure in the HD simulations closely follows the analytic solution of Kluźniak and Kita (2000) -- in particular a region of "midplane" backflow exists in the right range of radii, depending on the viscosity parameter. In the MHD solutions, whenever the magnetic Prandtl number does not exceed a certain critical value, the midplane backflow exists throughout the accretion disc, extending all the way down to the inner transition zone where the disc transitions to a magnetic funnel flow. For values of the magnetic Prandtl number close to the critical value the backflow and the inner disc undergo a quasiperiodic radial oscillation, otherwise the backflow is steady, as is the disc solution. From our results, supplemented by our reading of the literature, we conclude that midplane backflow is a real feature of at least some accretion discs, whether HD $α$-discs or MHD discs, including ones driven by MRI turbulence.