论文标题
语义视觉同时定位和映射:调查
Semantic Visual Simultaneous Localization and Mapping: A Survey
论文作者
论文摘要
视觉同时定位和映射(VSLAM)在计算机视觉和机器人社区中取得了巨大进展,并已成功用于许多领域,例如自主机器人导航和AR/VR。但是,VSLAM无法在动态和复杂的环境中实现良好的定位。许多出版物报告说,通过与VSLAM结合语义信息,语义VSLAM系统具有近年来解决上述问题的能力。然而,尚无关于语义VSLAM的全面调查。为了填补空白,本文首先回顾了语义VSLAM的发展,并明确着眼于其优势和差异。其次,我们探讨了语义VSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用以及语义VSLAM的优势。然后,我们收集和分析已广泛用于语义VSLAM系统的当前最新SLAM数据集。最后,我们讨论未来的方向,该方向将为语义VSLAM的未来发展提供蓝图。
Visual Simultaneous Localization and Mapping (vSLAM) has achieved great progress in the computer vision and robotics communities, and has been successfully used in many fields such as autonomous robot navigation and AR/VR. However, vSLAM cannot achieve good localization in dynamic and complex environments. Numerous publications have reported that, by combining with the semantic information with vSLAM, the semantic vSLAM systems have the capability of solving the above problems in recent years. Nevertheless, there is no comprehensive survey about semantic vSLAM. To fill the gap, this paper first reviews the development of semantic vSLAM, explicitly focusing on its strengths and differences. Secondly, we explore three main issues of semantic vSLAM: the extraction and association of semantic information, the application of semantic information, and the advantages of semantic vSLAM. Then, we collect and analyze the current state-of-the-art SLAM datasets which have been widely used in semantic vSLAM systems. Finally, we discuss future directions that will provide a blueprint for the future development of semantic vSLAM.