论文标题
通过隐式神经表示,连续纵向胎儿脑图集
Continuous longitudinal fetus brain atlas construction via implicit neural representation
论文作者
论文摘要
纵向胎儿脑图集是理解和表征胎儿大脑发育过程的复杂过程的强大工具。现有的胎儿脑图通常是由离散时间点上的平均大脑图像构建的,随着时间的流逝。由于样品在不同时间点的样品之间的遗传趋势差异,因此所得的图像群遇到了时间不一致,这可能会导致估计时间表脑线发育特征参数的误差。为此,我们提出了一个多阶段的深度学习框架,以解决时间不一致问题作为4D(3D大脑体积 + 1D年龄)图像数据剥夺任务。使用隐式神经表示,我们构建了一个连续无噪声的纵向胎儿脑图集,这是4D时空坐标的函数。对两个公共胎儿脑图集(CRL和FBA-中心地图酶)的实验结果表明,所提出的方法可以显着提高Atlas时间一致性,同时保持良好的胎儿脑结构表示。另外,连续的纵向胎儿大脑图石也可以广泛地应用于在空间和时间分辨率中生成更精细的4D图谱。
Longitudinal fetal brain atlas is a powerful tool for understanding and characterizing the complex process of fetus brain development. Existing fetus brain atlases are typically constructed by averaged brain images on discrete time points independently over time. Due to the differences in onto-genetic trends among samples at different time points, the resulting atlases suffer from temporal inconsistency, which may lead to estimating error of the brain developmental characteristic parameters along the timeline. To this end, we proposed a multi-stage deep-learning framework to tackle the time inconsistency issue as a 4D (3D brain volume + 1D age) image data denoising task. Using implicit neural representation, we construct a continuous and noise-free longitudinal fetus brain atlas as a function of the 4D spatial-temporal coordinate. Experimental results on two public fetal brain atlases (CRL and FBA-Chinese atlases) show that the proposed method can significantly improve the atlas temporal consistency while maintaining good fetus brain structure representation. In addition, the continuous longitudinal fetus brain atlases can also be extensively applied to generate finer 4D atlases in both spatial and temporal resolution.