论文标题
计算机视觉和图像分析的进化计算的调查:过去,现在和未来趋势
A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends
论文作者
论文摘要
计算机视觉(CV)是涵盖广泛应用的人工智能中的一个重要领域。图像分析是CV旨在提取,分析和理解图像的视觉内容的主要任务。但是,由于许多因素,与图像相关的任务非常具有挑战性,例如,图像之间的较高变化,高维度,域专业知识要求和图像扭曲。进化计算(EC)方法已被广泛用于图像分析,并取得了重大成就。但是,没有对现有的EC方法进行图像分析的全面调查。为了填补这一空白,本文提供了一项全面的调查,涵盖了重要的图像分析任务的所有基本EC方法,包括边缘检测,图像分割,图像特征分析,图像分类,对象检测等。这项调查旨在通过讨论不同方法的贡献并探讨如何以及为什么将EC用于简历和图像分析,以更好地了解进化计算机视觉(ECV)。还讨论并总结了与该研究领域相关的应用,挑战,问题和趋势,以提供进一步的指南和未来研究的机会。
Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, image-related tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research.