论文标题

通过双级参数学习产生的非本地脱氧模型的结构变化

Structural changes in nonlocal denoising models arising through bi-level parameter learning

论文作者

Davoli, Elisa, Ferreira, Rita, Kreisbeck, Carolin, Schönberger, Hidde

论文摘要

我们基于双层优化方案介绍了一个统一的框架,以在图像处理的背景下处理参数学习。目的是根据一般拓扑空间中的参数确定家庭中的最佳正规化器。我们的重点在于与非紧密参数域的情况,例如,当处理常用的框约束时,它是相关的。为了克服这种缺乏紧凑性,我们提出了通过伽马连接的上层功能的自然扩展,以封闭参数域,该伽马连接捕获了域边缘重建模型的可能结构变化。在两个主要假设下,即,正规化器的Mosco-Convergence和低级问题的最小化器的唯一性,我们证明扩展与放松相吻合,因此承认与兴趣的参数优化问题相关的最小化器。我们将抽象框架应用于图像DeNoising中实际相关模型的四重奏,所有模型都具有非局部性。正规化器的相关家族在质量上表现出不同的参数依赖性,描述了权重因子,非局部性数量,集成性指数和分数顺序。在决定了四个设置中每一个中的每个设置中的松弛的渐近分析之后,我们最终在数据上建立了保证模型结构稳定性的理论条件,并给出了何时失去稳定性的示例。

We introduce a unified framework based on bi-level optimization schemes to deal with parameter learning in the context of image processing. The goal is to identify the optimal regularizer within a family depending on a parameter in a general topological space. Our focus lies on the situation with non-compact parameter domains, which is, for example, relevant when the commonly used box constraints are disposed of. To overcome this lack of compactness, we propose a natural extension of the upper-level functional to the closure of the parameter domain via Gamma-convergence, which captures possible structural changes in the reconstruction model at the edge of the domain. Under two main assumptions, namely, Mosco-convergence of the regularizers and uniqueness of minimizers of the lower-level problem, we prove that the extension coincides with the relaxation, thus admitting minimizers that relate to the parameter optimization problem of interest. We apply our abstract framework to investigate a quartet of practically relevant models in image denoising, all featuring nonlocality. The associated families of regularizers exhibit qualitatively different parameter dependence, describing a weight factor, an amount of nonlocality, an integrability exponent, and a fractional order, respectively. After the asymptotic analysis that determines the relaxation in each of the four settings, we finally establish theoretical conditions on the data that guarantee structural stability of the models and give examples of when stability is lost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源