论文标题

部分可观测时空混沌系统的无模型预测

Counting nearest faraway flats for Coxeter chambers

论文作者

Douvropoulos, Theo

论文摘要

在有限的Coxeter组$ W $中,并有两个给定的抛物线子组$ [x] $和$ [y] $的结合类别类别,我们计算了这些是全部支持的寄生抛物线子组,同时是简单的扩展名(即通过单个反射(即通过单个反射)(即单个反射)的一些标准副羊皮纸$ $ $ $ w $ [$ $ w]枚举由仅取决于两种抛物线类型的产品公式给出。我们的派生是无病例的,并将“全面支持”属性的几何解释与涉及Crapo Beta不变的双重计数论点结合在一起。作为推论,这种方法提供了第一个无案证明肖普顿公式的证明,以实现真正的反思组$ w $中全面支持的数量。

In a finite Coxeter group $W$ and with two given conjugacy classes of parabolic subgroups $[X]$ and $[Y]$, we count those parabolic subgroups of $W$ in $[Y]$ that are full support, while simultaneously being simple extensions (i.e., extensions by a single reflection) of some standard parabolic subgroup of $W$ in $[X]$. The enumeration is given by a product formula that depends only on the two parabolic types. Our derivation is case-free and combines a geometric interpretation of the "full support" property with a double counting argument involving Crapo's beta invariant. As a corollary, this approach gives the first case-free proof of Chapoton's formula for the number of reflections of full support in a real reflection group $W$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源