论文标题

跨透明镜和软骰子损失的最佳组合,用于病变分割,并分布不足

On the Optimal Combination of Cross-Entropy and Soft Dice Losses for Lesion Segmentation with Out-of-Distribution Robustness

论文作者

Galdran, Adrian, Carneiro, Gustavo, Ballester, Miguel Ángel González

论文摘要

我们研究了不同损失功能对医疗图像病变细分的影响。尽管在处理自然图像时,跨透明拷贝(CE)损失是最受欢迎的选择,但对于生物医学图像进行分割,由于其处理不平衡方案的能力,柔软的骰子损失通常是首选的。另一方面,这两个功能的组合也已成功地应用于这种任务。一个较少研究的问题是在存在分布(OOD)数据的情况下所有这些损失的概括能力。这是指在测试时间出现的样本,这些样本是从与训练图像不同的分布中得出的。在我们的情况下,我们会在始终包含病变的图像上训练模型,但是在测试时间我们也有无病变的样品。我们通过全面的实验对内窥镜图像和糖尿病脚图像的溃疡分割进行了全面的实验,分析了不同损失函数对分布性能的最小化对分布性能的影响。我们的发现令人惊讶:在处理OOD数据时,在分割分布图像中表现出色的CE-DICE损失组合的性能较差,这使我们建议通过此类问题采用CE损失,因为它的稳健性和能够推广到OOD样品。可以在https://github.com/agaldran/lesion_losses_ood上找到与我们实验相关的代码。

We study the impact of different loss functions on lesion segmentation from medical images. Although the Cross-Entropy (CE) loss is the most popular option when dealing with natural images, for biomedical image segmentation the soft Dice loss is often preferred due to its ability to handle imbalanced scenarios. On the other hand, the combination of both functions has also been successfully applied in this kind of tasks. A much less studied problem is the generalization ability of all these losses in the presence of Out-of-Distribution (OoD) data. This refers to samples appearing in test time that are drawn from a different distribution than training images. In our case, we train our models on images that always contain lesions, but in test time we also have lesion-free samples. We analyze the impact of the minimization of different loss functions on in-distribution performance, but also its ability to generalize to OoD data, via comprehensive experiments on polyp segmentation from endoscopic images and ulcer segmentation from diabetic feet images. Our findings are surprising: CE-Dice loss combinations that excel in segmenting in-distribution images have a poor performance when dealing with OoD data, which leads us to recommend the adoption of the CE loss for this kind of problems, due to its robustness and ability to generalize to OoD samples. Code associated to our experiments can be found at https://github.com/agaldran/lesion_losses_ood .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源