论文标题

扭曲组环和嘈杂线性细胞自动机的稳定有限

Stable finiteness of twisted group rings and noisy linear cellular automata

论文作者

Phung, Xuan Kien

论文摘要

对于线性的非均匀细胞自动机(NUCA),它们是群体$ g $的线性CA的局部扰动,并且在任意字段$ k $上是有限维矢量空间$ v $ v $,我们研究了他们的Dedekind有限属性属性,也被称为直接有限属性,即直接有限属性,即左或右或右图的无限性。我们说,$ g $是$ l^1 $ - surjunctive,resp。有限$ l^1 $ - 外部,如果所有此类线性核在稳定的注入性时都会自动汇总,请自动汇总。另外,$ k $是有限的。同时,我们将环$ d^1(k [g])$介绍为笛卡尔产品$ k [g] \ times(k [g])[g] $作为添加剂组,但乘法在第二个组件中扭曲。环$ d^1(k [g])$自然包含group und $ k [g] $,我们在每个字段$ k $的稳定有限$ l^1 $ l^1 $ surjunctivity the Group $ g $方面的稳定性表征,例如,当$ G $是$ G $的残留有限的或最初的次数下属或最初的子量后,它持有。我们的结果扩展了已知的结果。

For linear non-uniform cellular automata (NUCA) which are local perturbations of linear CA over a group universe $G$ and a finite-dimensional vector space alphabet $V$ over an arbitrary field $k$, we investigate their Dedekind finiteness property, also known as the direct finiteness property, i.e., left or right invertibility implies invertibility. We say that the group $G$ is $L^1$-surjunctive, resp. finitely $L^1$-surjunctive, if all such linear NUCA are automatically surjective whenever they are stably injective, resp. when in addition $k$ is finite. In parallel, we introduce the ring $D^1(k[G])$ which is the Cartesian product $k[G] \times (k[G])[G]$ as an additive group but the multiplication is twisted in the second component. The ring $D^1(k[G])$ contains naturally the group ring $k[G]$ and we obtain a dynamical characterization of its stable finiteness for every field $k$ in terms of the finite $L^1$-surjunctivity of the group $G$, which holds for example when $G$ is residually finite or initially subamenable. Our results extend known results in the case of CA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源