论文标题

双曲线高斯分析功能的零的拥挤

Overcrowding for zeros of Hyperbolic Gaussian analytic functions

论文作者

Waknin, Keren Mor

论文摘要

我们考虑了单位磁盘中高斯分析函数的家族$ \ {f_l \} _ {l> 0} $,其零设置相对于双曲线异构体的零设置而区别。令$ n_l \ left(r \右)$为半径$ r $ $ f_l $的零数。我们研究了罕见事件的渐近概率,在该事件中,零为$ r \ uparrow1 $,即,对于每个$ l> 0 $,我们正在寻找概率$ \ mathbb {p} \ mathbb {p} \ weft [n_l(r)\ geq v v with $ y的差异(p} p} $ \ mathbb {e} \ left [n_l \ left(r \ right)\ right] $。佩雷斯(Peres)和维拉格(Virág)表明,对于$ l = 1 $(并且只有那时),零集构成了确定点过程,从而使许多明确的计算成为可能。奇怪的是,与对平面模型的理解相反,似乎$ l <<1 $,当$ v $接近$ \ mathbb {e} \ left [n_l \ left [n_l \ left(r \ r \ right)\ right] $的可能性比零不足的可能性要小得多。

We consider the family $\{f_L\}_{L>0}$ of Gaussian analytic functions in the unit disk, distinguished by the invariance of their zero set with respect to hyperbolic isometries. Let $n_L\left(r\right)$ be the number of zeros of $f_L$ in a disk of radius $r$. We study the asymptotic probability of the rare event where there is an overcrowding of the zeros as $r\uparrow1$, i.e. for every $L>0$, we are looking for the asymptotics of the probability $\mathbb{P}\left[n_L(r)\geq V(r)\right]$ with $V\left(r\right)$ large compared to the $\mathbb{E}\left[n_L\left(r\right)\right]$. Peres and Virág showed that for $L=1$ (and only then) the zero set forms a determinantal point process, making many explicit computations possible. Curiously, contrary to the much better understood planar model, it appears that for $L<1$ the exponential order of decay of the probability of overcrowding when $V$ is close to $\mathbb{E}\left[n_L\left(r\right)\right]$ is much less than the probability of a deficit of zeros.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源