论文标题
Y形的Kekulé石墨烯中的新兴抗铁磁
Emergent Anti-ferromagnetism in a Y -Shaped Kekulé Graphene
论文作者
论文摘要
由Y形kekulé扭曲在石墨烯中产生的双重dirac fermions的抗磁磁(AF)过渡,通过平均场理论和决定性的量子蒙特卡洛模拟研究。我们表明,量子临界点可以通过键调节强度连续调节,量子临界值的普遍性仍然保留在总的neveu-heisenberg类中。临界相互作用尺度与双重狄拉克锥的两个速度的几何平均值,并在均匀和完全耗尽的极限之间单调减小。由于可以将AF临界相互作用调整为很小的值,因此可以自动出现抗铁磁性,从而意识到石墨烯中长期追求的磁性。这些结果丰富了我们对Dirac-Fermion Systems中半度AF跃迁的理解,并为实现石墨烯中的磁性开辟了新的途径。
Antiferromagnetic (AF) transitions of birefringent Dirac fermions created by a Y-shaped Kekulé distortion in graphene are investigated by the mean-field theory and the determinant quantum Monte Carlo simulations. We show that the quantum critical point can be continuously tuned by the bond-modulation strength, and the universality of the quantum criticality remains in the Gross-Neveu-Heisenberg class. The critical interaction scales with the geometric average of the two velocities of the birefringent Dirac cones and decreases monotonically between the uniform and the completely depleted limits. Since the AF critical interaction can be tuned to very small values, antiferromagnetism may emerge automatically, realizing the long-sought magnetism in graphene. These results enrich our understanding of the semimetal-AF transitions in Dirac-fermion systems and open a new route to achieving magnetism in graphene.