论文标题

数字理论的量子物理

Quantum Physics from Number Theory

论文作者

Palmer, Tim

论文摘要

赋予量子力学的性质独特的特征 - 单位性,互补性,非交换性,不确定性,非定位性 - 源自赫尔特尼亚操作员在复杂希尔伯特空间中波力上作用的遗传操作员的代数结构。因此,不能显示波功能来描述确定性状态的集合,在这种情况下,不确定性仅反映出缺乏合奏成员描述现实的知识。这导致了关于量子力学本体的无休止的辩论。 在这里,我们从适用于离散的复合物希尔伯特状态的明确集合表示的三角函数的数字理论属性中得出了这些相同的量子特性。为了避免进行微调,国家空间上的度量必须为$ p $ - adic,而不是欧几里得人,其中$ 1/p $决定了离散化的细度。这暗示着存在基础的分形空间几何形状的存在。在此模型中,违反贝尔的不平等是这种几何约束的体现,并不意味着当地时空因果关系的细分。 由于离散的波函数描述了状态的整体,因此波功能没有崩溃。相反,测量描述了状态空间几何形状上状态空间轨迹的非线性聚类。在此模型中,质量大于普朗克质量的系统不会表现出量子特性,而是经典地行为。几何约束表明,随量子数的数字大小的指数增加可能会随量子数量小至几百个而分解。量子力学本身是此数字理论模型的单数极限,$ p = \ infty $。提出了与这种离散的量子物理模型一致的一般相对性的修改。

The properties which give quantum mechanics its unique character - unitarity, complementarity, non-commutativity, uncertainty, nonlocality - derive from the algebraic structure of Hermitian operators acting on the wavefunction in complex Hilbert space. Because of this, the wavefunction cannot be shown to describe an ensemble of deterministic states where uncertainty simply reflects a lack of knowledge about which ensemble member describes reality. This has led to endless debates about the ontology of quantum mechanics. Here we derive these same quantum properties from number theoretic attributes of trigonometric functions applied to an explicitly ensemble-based representation of discretised complex Hilbert states. To avoid fine-tuning, the metric on state space must be $p$-adic rather than Euclidean where $1/p$ determines the fineness of the discretisation. This hints at both the existence of an underpinning fractal state-space geometry onto which states of the world are constrained. In this model, violation of Bell inequalities is a manifestation of this geometric constraint and does not imply a breakdown of local space-time causality. Because the discretised wavefunction describes an ensemble of states, there is no collapse of the wavefunction. Instead measurement describes a nonlinear clustering of state-space trajectories on the state-space geometry. In this model, systems with mass greater than the Planck mass will not exhibit quantum properties and instead behave classically. The geometric constraint suggests that the exponential increase in the size of state space with qubit number may break down with qubit numbers as small as a few hundred. Quantum mechanics is itself a singular limit of this number-theoretic model at $p=\infty$. A modification of general relativity, consistent with this discretised model of quantum physics, is proposed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源