论文标题
可实现的$ \ Mathcal {pt} $反射量子散射中的相变
Experimentally-realizable $\mathcal{PT}$ phase transitions in reflectionless quantum scattering
论文作者
论文摘要
证明一类级级级量子散落的问题提供了一个可访问的平台,用于研究$ \ Mathcal {pt} $ - 对称schrödinger方程,尽管具有纯粹的真实潜力,但表现出自发$ \ Mathcal {pt} $对称性。这些电势是一维的,倒的和不稳定的,并具有$ v(x)= - \ lvert x \ rvert^p $($ p> 0 $)的形式,以有限的长度或能量终止,恒定值为$ x \ to \ x \ to \ pm \ pm \ infty $。不间断的$ \ Mathcal {pt} $对称的签名是存在于离散的真实能量到任意高能量的无反射传播状态的存在。在$ \ Mathcal {pt} $ - 破碎阶段中,没有这样的解决方案。此外,存在一个中间混合阶段,其中无反射状态在低能量下存在,但在固定有限能量下消失,与终止长度无关。在混合阶段中,特殊点(EPS)以特定的$ p $和能量值发生,而反射率的四分之一倾角与远离EPS的二次行为相反。 $ \ Mathcal {pt} $ - 以前在具有真正潜力且无储层耦合的量子系统中预测了对称性现象。这里预测的效果在具有可编程光学陷阱的标准冷原子实验中可以测量。使用WKB力分析阐明了对称性跃迁的物理起源,该分析识别了上面垒散射的空间位置。
A class of above-barrier quantum-scattering problems is shown to provide an experimentally-accessible platform for studying $\mathcal{PT}$-symmetric Schrödinger equations that exhibit spontaneous $\mathcal{PT}$ symmetry breaking despite having purely real potentials. These potentials are one-dimensional, inverted, and unstable and have the form $V(x) = - \lvert x\rvert^p$ ($p>0$), terminated at a finite length or energy to a constant value as $x\to \pm\infty$. The signature of unbroken $\mathcal{PT}$ symmetry is the existence of reflectionless propagating states at discrete real energies up to arbitrarily high energy. In the $\mathcal{PT}$-broken phase, there are no such solutions. In addition, there exists an intermediate mixed phase, where reflectionless states exist at low energy but disappear at a fixed finite energy, independent of termination length. In the mixed phase exceptional points (EPs) occur at specific $p$ and energy values, with a quartic dip in the reflectivity in contrast to the quadratic behavior away from EPs. $\mathcal{PT}$-symmetry-breaking phenomena have not been previously predicted in a quantum system with a real potential and no reservoir coupling. The effects predicted here are measurable in standard cold-atom experiments with programmable optical traps. The physical origin of the symmetry-breaking transition is elucidated using a WKB force analysis that identifies the spatial location of the above-barrier scattering.