论文标题
来自[0,1]的函数的遗传性分解概括的逆极限,所有周期的周期
A Hereditarily Decomposable Generalized Inverse Limit from a Function on [0,1] with cycles of all periods
论文作者
论文摘要
在本文中,我们使用上半连续的设置值函数来考虑$ [0,1] $的逆极限。我们旨在扩展先前的论文,探讨连续函数的存在周期点与相应反向极限的不可塑性亚脑的存在之间的关系。在上一篇论文中,给出了足够的条件,使得,如果令人满意的键合映射$ f $具有定期周期的周期,而不是2的功率,则$ \ lim \ limits _ {\ leftarrow} \ {[0,1],f \} $包含一个不可分解的持续性。我们表明,$ f $几乎是非杂交的条件是通过构建具有每个时期的中间值属性和定期周期的上半连续的圆形地图$ f $,但产生遗传性可分解的反倒数限制。
In this paper, we consider inverse limits of $[0,1]$ using upper semicontinuous set-valued functions. We aim to expand on a previous paper exploring the relationship between the existence periodic points of a continuous function to the existence of indecomposable subcontinua of the corresponding inverse limit. In a previous paper, sufficient conditions were given such that if a satisfactory bonding map $F$ had a periodic cycle of period not a power of 2, then $\lim\limits_{\leftarrow}\{[0,1],F\}$ contains an indecomposable continuum. We show that the condition that $F$ is almost nonfissile is sharp by constructing an upper semicontinuous, surjective map $F$ that has the intermediate value property and periodic cycles of every period, yet produces a hereditarily decomposable inverse limit.