论文标题
高级CMOS设备的紫外线激光退火技术的最新进展和观点
Recent Progresses and Perspectives of UV Laser Annealing Technologies for Advanced CMOS Devices
论文作者
论文摘要
最先进的CMOS技术已经开始采用三维(3D)集成方法,从而实现了连续的芯片密度增长和性能的改进,同时减轻了传统的平面缩放率遇到的困难。这种新的设备体系结构除了提取最佳材料属性所需的努力外,还挑战了降低CMOS设备中各地应用过程的热预算,因此必须更换常规过程,而不会对设备性能进行任何损害。那么,超紫激光退火(UV-LA)对于满足这种要求至关重要。首先,将UV光吸收到材料中的强烈有限,允许表面放置热源。其次,工艺时间尺度通常从纳秒(NS)到微秒(μs)不等,可有效限制垂直方向上的热扩散。在给定的3D堆栈中,这些特定功能允许在顶层中升高实际过程温度,而无需在底层层中引入任何缺点。此外,短时间的紫外线可能在材料工程方面具有一些优势,从而可以对某些现象(例如结晶,掺杂剂激活和扩散)的非平衡控制。本文回顾了最近的进展报道,有关短期尺度UV-LA在CMOS集成阶段的应用,这强调了其成为下一代3D综合CMOS设备的关键推动力的潜力。
The state-of-the-art CMOS technology has started to adopt three-dimensional (3D) integration approaches, enabling continuous chip density increment and performance improvement, while alleviating difficulties encountered in traditional planar scaling. This new device architecture, in addition to the efforts required for extracting the best material properties, imposes a challenge of reducing the thermal budget of processes to be applied everywhere in CMOS devices, so that conventional processes must be replaced without any compromise to device performance. Ultra-violet laser annealing (UV-LA) is then of prime importance to address such a requirement. First, the strongly limited absorption of UV light into materials allows surface-localized heat source generation. Second, the process timescale typically ranging from nanoseconds (ns) to microseconds (μs) efficiently restricts the heat diffusion in the vertical direction. In a given 3D stack, these specific features allow the actual process temperature to be elevated in the top-tier layer without introducing any drawback in the bottom-tier one. In addition, short-timescale UV-LA may have some advantages in materials engineering, enabling the nonequilibrium control of certain phenomenon such as crystallization, dopant activation, and diffusion. This paper reviews recent progress reported about the application of short-timescale UV-LA to different stages of CMOS integration, highlighting its potential of being a key enabler for next generation 3D-integrated CMOS devices.