论文标题
生成模型的结构化识别,并解释
Structured Recognition for Generative Models with Explaining Away
论文作者
论文摘要
无监督学习的一个关键目标是超越密度估计和样本生成,以揭示观察到的数据内固有的结构。这种结构可以用通过概率图形模型捕获的解释性潜在变量之间的相互作用模式表示。尽管结构化图形模型的学习历史悠久,但在无监督的建模中的许多最新工作都强调了灵活的基于深网的生成,要么将独立的潜在发电机转换为建模复杂数据,要么假设明显的观察到的变量来自不同的潜在节点。在这里,我们扩展了摊销的变异推断,以在多个变量上纳入结构化因子,能够捕获观察到的后依赖性在``解释掉了'''中导致的潜在的后依赖性,从而允许复杂的观察结果取决于结构性图的多个节点。我们表明,适当的参数化因子可以与丰富的图形结构中的变异消息有效合并。我们在非线性高斯过程因子分析中实例化框架,并使用已知生成过程中的合成数据评估结构化识别框架。我们将GPFA模型拟合到来自自由移动啮齿动物海马的高维神经尖峰数据,该模型成功地识别了与行为协变量相关的潜在信号。
A key goal of unsupervised learning is to go beyond density estimation and sample generation to reveal the structure inherent within observed data. Such structure can be expressed in the pattern of interactions between explanatory latent variables captured through a probabilistic graphical model. Although the learning of structured graphical models has a long history, much recent work in unsupervised modelling has instead emphasised flexible deep-network-based generation, either transforming independent latent generators to model complex data or assuming that distinct observed variables are derived from different latent nodes. Here, we extend amortised variational inference to incorporate structured factors over multiple variables, able to capture the observation-induced posterior dependence between latents that results from ``explaining away'' and thus allow complex observations to depend on multiple nodes of a structured graph. We show that appropriately parametrised factors can be combined efficiently with variational message passing in rich graphical structures. We instantiate the framework in nonlinear Gaussian Process Factor Analysis, evaluating the structured recognition framework using synthetic data from known generative processes. We fit the GPFA model to high-dimensional neural spike data from the hippocampus of freely moving rodents, where the model successfully identifies latent signals that correlate with behavioural covariates.