论文标题

Halevi的等离子系统的Euler-Drude模型的扩展

Halevi's extension of the Euler-Drude model for plasmonic systems

论文作者

Wegner, Gino, Huynh, Dan-Nha, Mortensen, N. Asger, Intravaia, Francesco, Busch, Kurt

论文摘要

血浆材料和纳米结构的非局部反应通常在基于Euler-Drude方程的流体动力学方法中描述。在这项工作中,我们在线性响应理论中重新考虑了这种方法,并采用了Halevi扩展到该标准的流体动力模型。在讨论了该改进模型的影响(我们称Halevi模型)对纵向体积模式传播的影响之后,我们因此扩展了MIE-Ruppin理论。具体而言,我们得出了圆柱体表面等离子体的分散关系。这揭示了一个非本地的碰撞阻尼项,这与早期的现象学考虑因素有关有限的无均值path效应以及影响灭绝光谱中相应共振的峰值宽度和振幅的影响。此外,我们将Halevi模型转移到时间域中,从而揭示了与Cattaneo型电流具有某些相似性的新颖的扩散贡献,并分析了所得的混合,扩散的波动运动。此外,我们讨论了Halevi模型与文献中常用的其他方法的关系。最后,我们演示了如何将Halevi模型实施到不连续的 - 加勒金时域有限元麦克斯韦求解器中,并能够确定对扩散电流的振荡贡献。因此,Halevi模型捕获了超出标准流体动力模型以外的许多相关特征。与标准流体动力学模型的其他扩展相反,其在麦克斯韦求解器中的使用很简单 - 特别是由于它与一类描述相关,这些描述允许在散装和表面响应之间明确区分。对于在纳米质量符号中的应用中,纳米间隙结构和其他纳米尺度特征必须有效,准确地建模。

The nonlocal response of plasmonic materials and nanostructures is usually described within a hydrodynamic approach which is based on the Euler-Drude equation. In this work, we reconsider this approach within linear response theory and employ Halevi's extension to this standard hydrodynamic model. After discussing the impact of this improved model, which we term the Halevi model, on the propagation of longitudinal volume modes, we accordingly extend the Mie-Ruppin theory. Specifically, we derive the dispersion relation of cylindrical surface plasmons. This reveals a nonlocal, collisional damping term which is related to earlier phenomenological considerations of limited-mean-free-path effects and influences both, peak width and amplitude of corresponding resonances in the extinction spectrum. In addition, we transfer the Halevi model into the time-domain thereby revealing a novel, diffusive contribution to the current which shares certain similarities with Cattaneo-type currents and analyze the resulting hybrid, diffusive-wave-like motion. Further, we discuss the relation of the Halevi model to other approaches commonly used in the literature. Finally, we demonstrate how to implement the Halevi model into the Discontinuous-Galerkin Time-Domain finite-element Maxwell solver and are able to identify an oscillatory contribution to the diffusive current. The Halevi model thus captures a number of relevant features beyond the standard hydrodynamic model. Contrary to other extensions of the standard hydrodynamic model, its use in time-domain Maxwell solvers is straightforward -- especially due its affinity to a class of descriptions that allow for a clear distinction between bulk and surface response. This is of particular importance for applications in nano-plasmonics where nano-gap structures and other nano-scale features have to be modeled efficiently and accurately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源