论文标题

混乱的弦乐运动以接近PP波的极限

Chaotic string motion in a near pp-wave limit

论文作者

Kushiro, Shodai, Yoshida, Kentaroh

论文摘要

我们以接近PP-WAVE的限制为$ _5 \ times $ s $^5 $以接近PP波的限制重新访问经典弦乐。众所周知,Toda晶格模型是可集成的。但是,如果指数势以有限顺序截断,则系统可能变得不可集成。特别是,当三粒子周期性TODA链中的指数势在动态变量的三阶截断时,所得系统成为众所周知的不可融合系统,亨逊·赫尔斯模型。同一件事可能会以接近PP波的限制为$ _5 \ times $ s $^5 $,经典的弦乐运动变得混乱。

We revisit classical string motion in a near pp-wave limit of AdS$_5\times$S$^5$. It is known that the Toda lattice models are integrable. But if the exponential potential is truncated at finite order, then the system may become non-integrable. In particular, when the exponential potential in a three-particle periodic Toda chain is truncated at the third order of the dynamical variables, the resulting system becomes a well-known non-integrable system, Henon-Heiles model. The same thing may happen in a near pp-wave limit of AdS$_5\times$S$^5$, on which the classical string motion becomes chaotic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源