论文标题

一种预测金属强度的统计观点:使用机器学习重新访问霍尔西的关系

A Statistical Perspective for Predicting the Strength of Metals: Revisiting the Hall-Petch Relationship using Machine Learning

论文作者

Gu, Yejun, Stiles, Christopher D., El-Awady, Jaafar A.

论文摘要

材料的机械性能与其微观结构密切相关。这对于预测多晶金属的机械行为尤为重要,其中微结构变化决定了预期的材料强度。到目前为止,可用数据集缺乏微结构可变性排除了基于物理学的理论模型的发展,这些模型解释了微观结构的随机性。为了解决这个问题,我们开发了一个概率的机器学习框架,以预测流动应力是微观结构特征变化的函数。在此框架中,我们首先生成了一组超过一百万个随机采样的微观结构特征的流动应力数据库,然后在生成的数据库上应用了混合模型和神经网络的组合,以量化流量应力分布和微观结构特征的相对重要性。结果表明,与实验的一致性非常吻合,并证明,在各种晶粒尺寸中,传统的Hall-Petch关系在统计学上对于将强度与平均晶粒尺寸及其比较重要性与其他微观结构特征相关联在统计上有效。这项工作证明了基于机器学习的概率方法来预测多晶强度,直接考虑了微观结构变化,从而导致一种工具,可指导具有优质强度的多晶金属材料的设计,以及一种克服稀疏数据限制的方法。

The mechanical properties of a material are intimately related to its microstructure. This is particularly important for predicting mechanical behavior of polycrystalline metals, where microstructural variations dictate the expected material strength. Until now, the lack of microstructural variability in available datasets precluded the development of robust physics-based theoretical models that account for randomness of microstructures. To address this, we have developed a probabilistic machine learning framework to predict the flow stress as a function of variations in the microstructural features. In this framework, we first generated an extensive database of flow stress for a set of over a million randomly sampled microstructural features, and then applied a combination of mixture models and neural networks on the generated database to quantify the flow stress distribution and the relative importance of microstructural features. The results show excellent agreement with experiments and demonstrate that across a wide range of grain size, the conventional Hall-Petch relationship is statistically valid for correlating the strength to the average grain size and its comparative importance versus other microstructural features. This work demonstrates the power of the machine-learning based probabilistic approach for predicting polycrystalline strength, directly accounting for microstructural variations, resulting in a tool to guide the design of polycrystalline metallic materials with superior strength, and a method for overcoming sparse data limitations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源