论文标题

使用密度向下注入激光韦克菲尔德加速器中的电子束电流,电荷和能量扩散

Control of electron beam current, charge and energy spread using density downramp injection in laser wakefield accelerators

论文作者

Hue, Celine, Wan, Yang, Levine, Eitan Y., Malka, Victor

论文摘要

已证明密度DowMramp注射是一种在激光Wakefield加速器中产生高质量电子束的优雅和高效方法。然而,生产的光束的电荷是每焦点的激光能量的数十个PC,仍然限制了其用于更广泛的应用范围的使用。保持良好的光束质量同时产生高电荷光束的可能性,可以探索。此外,尽管以前的研究集中在单独的物理过程上,例如梁负荷,从而影响加速度场的均匀性,从而影响被困电子的能量,从气泡的后尖峰中排斥力,从而降低了横向动量$ p_ \ p_ \ p_ \ p_ \ perp $,而在小型光束emmittance和plaser trake trake in plase come trake in plasema the plase trake in plasema and plase trapermane和plase的结果。需要对最终梁特性上的血浆密度参数进行更一般的研究。在这项工作中,我们证明了注入的电子束的当前轮廓直接与密度过渡参数有关,这进一步影响了光束电荷和能量扩散。通过微调等离子密度参数,可以获得高电荷(最多数百个PC)和低能传播(左右1 \%FWHM)电子束。所有这些结果都由大规模的三维粒子模拟支持。

Density dowmramp injection has been demonstrated to be an elegant and efficient approach for generating high quality electron beams in laser wakefield accelerators. Yet, the charge of the produced beam is tens of pC per Joule of laser energy, still limiting its use for a wider range of applications. The possibility of generating high charge beam while keeping a good beam quality, stays to be explored. Moreover, despite previous studies focused on separate physical processes such as beam loading which affects the uniformity of the acceleration field and thus the energy spread of the trapped electrons, repulsive force from the rear spike of the bubble which reduces the transverse momentum $p_\perp$ of the trapped electrons and results in small beam emmittance, and the laser evolution when travelling in plasma. A more general investigation of the plasma density parameters on the final beam properties is required. In this work, we demonstrate that the current profile of the injected electron beam is directly correlated with the density transition parameters, which further affects the beam charge and energy spread. By fine-tuning the plasma density parameters, high-charge (up to several hundreds of pC) and low-energy-spread (around 1\% FWHM) electron beams can be obtained. All these results are supported by large-scale three-dimensional particle-in-cell simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源