论文标题
本地对数期戒指与感谢
Local log-regular rings vs. toric rings
论文作者
论文摘要
局部对数定型环是一类在对数几何形状中处理的Cohen-Macaulay局部环。我们的论文旨在提供纯粹的通用环理论证明局部对数定型环的某些环理论特性,例如对规范模块的显式描述,以及Divisor类组的有限生成。
Local log-regular rings are a certain class of Cohen-Macaulay local rings that are treated in logarithmic geometry. Our paper aims to provide purely commutative ring theoretic proof of some ring-theoretic properties of local log-regular rings such as an explicit description of a canonical module, and the finite generation of the divisor class group.