论文标题

硬优化问题具有软边

Hard Optimization Problems have Soft Edges

论文作者

Marino, Raffaele, Kirkpatrick, Scott

论文摘要

从图理论中找到最大的集团是经典的属性测试。在Erdös-rényiG(n,p)随机图中找到任何最大的完整子图中的任何一个。我们使用最大集团来探索问题的结构,该函数的函数,图形大小和K所寻求的集团大小。它显示一个复杂的相边界,一个台阶的楼梯在每个阶梯上,每个2 log2 n和kmax(可以找到的集团的最大尺寸)增加了1个。其每个边界都有一个有限的宽度,这些宽度允许局部算法可以找到超出无限系统研究所定义的集团。我们探讨了传统快速局部算法的许多扩展的性能,并发现在有限N处仍然可以访问大部分“硬”空间。“隐藏的集团”问题嵌入了一个比自然出现在G(n,p)随机图中的集团大。由于这样的集团是独一无二的,我们发现一旦找到隐藏集团的证据,就可以胜过最佳信息传递或光谱算法的本地搜索。

Finding a Maximum Clique is a classic property test from graph theory; find any one of the largest complete subgraphs in an Erdös-Rényi G(N, p) random graph. We use Maximum Clique to explore the structure of the problem as a function of N, the graph size, and K, the clique size sought. It displays a complex phase boundary, a staircase of steps at each of which 2log2 N and Kmax, the maximum size of a clique that can be found, increases by 1. Each of its boundaries has a finite width, and these widths allow local algorithms to find cliques beyond the limits defined by the study of infinite systems. We explore the performance of a number of extensions of traditional fast local algorithms, and find that much of the "hard" space remains accessible at finite N. The "hidden clique" problem embeds a clique somewhat larger than those which occur naturally in a G(N, p) random graph. Since such a clique is unique, we find that local searches which stop early, once evidence for the hidden clique is found, may outperform the best message passing or spectral algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源