论文标题

结构化$(\ min,+)$ - 卷积及其在最短矢量,最接近的向量和可分离的非线性背包问题的应用

Structured $(\min,+)$-Convolution And Its Applications For The Shortest Vector, Closest Vector, and Separable Nonlinear Knapsack Problems

论文作者

Gribanov, D. V., Shumilov, I. A., Malyshev, D. S.

论文摘要

在这项工作中,我们考虑了计算$(\ min, +)$ - 分别为$ a $ a $和$ b $的$ n $和$ n $和$ m $的卷积的问题,其中$ n \ geq m $。我们假设$ a $是任意的,但是$ b_i = f(i)$,其中$ f(x)\ colon [0,m)\ to \ mathbb {r} $是具有以下属性之一的函数: 1。线性情况,当$ f(x)=β+α\ cdot x $时; 2。单调案例,当$ f(i+1)\ geq f(i)$时,对于任何$ i $; 3。凸情况,当$ f(i+1)-f(i)\ geq f(i)-f(i -1)$,对于任何$ i $; 4。凹面案例,当$ f(i+1)-f(i)\ leq f(i)-f(i -1)$,对于任何$ i $; 5。零件线性盒,当$ f(x)$由$ p $线性零件组成时; 6。对于某些固定的$ d $,当$ f \ in \ mathbb {z}^d [x] $中时,多项式情况。 据我们所知,案件4-6以前没有考虑过。我们为它们开发了真正的次级算法。 我们将结果应用于背包问题,具有可分离的非线性目标函数,最短的晶格向量和最接近的晶格向量问题。

In this work we consider the problem of computing the $(\min, +)$-convolution of two sequences $a$ and $b$ of lengths $n$ and $m$, respectively, where $n \geq m$. We assume that $a$ is arbitrary, but $b_i = f(i)$, where $f(x) \colon [0,m) \to \mathbb{R}$ is a function with one of the following properties: 1. the linear case, when $f(x) =β+ α\cdot x$; 2. the monotone case, when $f(i+1) \geq f(i)$, for any $i$; 3. the convex case, when $f(i+1) - f(i) \geq f(i) - f(i-1)$, for any $i$; 4. the concave case, when $f(i+1) - f(i) \leq f(i) - f(i-1)$, for any $i$; 5. the piece-wise linear case, when $f(x)$ consist of $p$ linear pieces; 6. the polynomial case, when $f \in \mathbb{Z}^d[x]$, for some fixed $d$. To the best of our knowledge, the cases 4-6 were not considered in literature before. We develop true sub-quadratic algorithms for them. We apply our results to the knapsack problem with a separable nonlinear objective function, shortest lattice vector, and closest lattice vector problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源