论文标题

在半线性椭圆形BVP中生成环和壳

Generating loops and isolas in semilinear elliptic BVP's

论文作者

López-Gómez, Julián, Sampedro, Juan Carlos

论文摘要

在本文中,我们确定了一组正面和负面解决方案的全局$λ$ - 从$ u = 0 $分叉的全局$ u = 0 $,对于半连续的椭圆形BVP \ begin {equation*} \ left \ left \ left {\ okent {array {array} u \ rangle+u+λu^{2} -u^{q}&\ text {in}ω,\\ u = 0&\ text {on} \partialΩ,\ end end {array} \ right。根据$ d> 0 $的值和整数$ q \ geq 4 $。图1.1-1.3根据$ d $和$ q $的值总结了本文的主要发现。请注意,参数$λ$在此模型中所起的作用非常特别,因为除了测量对流的强度外,它还量化了非线性项$λu^2 $的幅度。我们将这个问题视为一种数学玩具,以生成反应扩散方程中的溶液回路和ISLAS。

In this paper, we ascertain the global $λ$-structure of the set of positive and negative solutions bifurcating from $u=0$ for the semilinear elliptic BVP \begin{equation*} \left\{\begin{array}{ll} -dΔu= λ\langle \mathfrak{a},\nabla u\rangle+u+λu^{2}-u^{q} & \text{ in } Ω, \\ u=0 & \text{ on } \partialΩ, \end{array}\right. \end{equation*} according to the values of $d>0$ and the integer number $q\geq 4$. Figures 1.1-1.3 summarize the main findings of this paper according to the values of $d$ and $q$. Note that the role played by the parameter $λ$ in this model is very special, because, besides measuring the strength of the convection, it quantifies the amplitude of the nonlinear term $λu^2$. We regard to this problem as a mathematical toy to generate solution loops and isolas in Reaction Diffusion equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源