论文标题

一维随机施罗丁算子的特征值波动

Eigenvalue Fluctuations of 1-dimensional random Schrödinger operators

论文作者

Mashiko, Takuto, Marui, Yuma, Maruyama, Naoki, Nakano, Fumihiko

论文摘要

作为Breuer,Grinshpon和White \ cite {B}的论文的扩展,我们研究了Schrödinger操作员特征值的线性统计数据,其随机衰减潜力随$ {\ cal o}的随机衰减潜力(\ cal O}(x^{ - α})$($α> 0 $)。 We first prove similar statements as in \cite{B} for the trace of $f(H)$, where $f$ belongs to a class of analytic functions : there exists a critical exponent $α_c$ such that the fluctuation of the trace of $f(H)$ converges in probability for $α> α_c$, and satisfies a CLT statement for $α\le α_c$, where $α_c$取决于$ f $。此外,我们研究其期望值的渐近行为。

As an extension to the paper by Breuer, Grinshpon, and White \cite{B}, we study the linear statistics for the eigenvalues of the Schrödinger operator with random decaying potential with order ${\cal O}(x^{-α})$ ($α>0$) at infinity. We first prove similar statements as in \cite{B} for the trace of $f(H)$, where $f$ belongs to a class of analytic functions : there exists a critical exponent $α_c$ such that the fluctuation of the trace of $f(H)$ converges in probability for $α> α_c$, and satisfies a CLT statement for $α\le α_c$, where $α_c$ differs depending on $f$. Furthermore we study the asymptotic behavior of its expectation value.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源