论文标题
使用连贯的光网络的非convex二次编程
Non-convex Quadratic Programming Using Coherent Optical Networks
论文作者
论文摘要
我们研究了使用相互作用的量子光学振荡器网络解决连续非凸优化问题的可能性。我们提出了与一组量子光学模式的正交运算符相关的模拟信号中连续变量的天然编码。由外部储层或模式的弱测量结果引入的模式和噪声的光学耦合用于光学地模拟一组连续的随机变量的扩散过程。该过程的运行足够长,可以使其放松到连续域上定义的能量电位的稳定状态。作为第一次演示,我们使用这些设置进行了数值基准解决框限制的二次编程(BoxQP)问题。我们考虑实验的延迟线和测量反馈变体。我们的基准测试结果表明,在这两种情况下,光网络都能够在三个数量级上的BoxQP问题比最先进的经典启发式问题更快。
We investigate the possibility of solving continuous non-convex optimization problems using a network of interacting quantum optical oscillators. We propose a native encoding of continuous variables in analog signals associated with the quadrature operators of a set of quantum optical modes. Optical coupling of the modes and noise introduced by vacuum fluctuations from external reservoirs or by weak measurements of the modes are used to optically simulate a diffusion process on a set of continuous random variables. The process is run sufficiently long for it to relax into the steady state of an energy potential defined on a continuous domain. As a first demonstration, we numerically benchmark solving box-constrained quadratic programming (BoxQP) problems using these settings. We consider delay-line and measurement-feedback variants of the experiment. Our benchmarking results demonstrate that in both cases the optical network is capable of solving BoxQP problems over three orders of magnitude faster than a state-of-the-art classical heuristic.