论文标题

评估群集随机试验的测试,在具有协变量调整的广义线性混合模型下,很少有簇的测试:一项仿真研究

Evaluating tests for cluster-randomized trials with few clusters under generalized linear mixed models with covariate adjustment: a simulation study

论文作者

Qiu, Hongxiang, Cook, Andrea J., Bobb, Jennifer F.

论文摘要

普遍的线性混合模型(GLMM)通常用于分析群集数据,但是当集群数量较小至中度时,标准统计测试可能会产生升高的I型错误率。已经提出了针对连续或二元结果的小样本校正,而无需协变调整。但是,用于计数结果或在协变量调整的模型下使用的适当测试仍然未知。此问题出现的一个重要环境是群集随机试验(CRT)。由于许多CRT只有几个群集(例如诊所或卫生系统),因此协变量调整对于解决潜在的偶然机会失衡和/或低功率(例如,在分层随机分层或结果的基线值之后的调整)特别重要。我们进行了模拟,以评估基于GLMM的治疗效果测试,这些测试是跨协变量调整方案的平行组CRT设置下的小(10)或中等(20)个簇数(包括对二进制和计数的一个或多个人级或集群或集群级别或群集的调整)。我们发现,当类内相关性不可忽略($ \ geq 0.01 $)并且协变量的数量很小($ \ \ leq 2 $)时,可能具有与I类的自由度之间具有I类错误率接近名称水平的可能性比率测试。当在我们的仿真方案中,协变量的数量中等($ \ geq 5 $)时,测试的相对性能变化很大,并且没有方法均匀地执行。因此,我们建议对不超过几个协变量进行调整,并使用与分母之间的自由度之间的似然比测试进行调整。

Generalized linear mixed models (GLMM) are commonly used to analyze clustered data, but when the number of clusters is small to moderate, standard statistical tests may produce elevated type I error rates. Small-sample corrections have been proposed for continuous or binary outcomes without covariate adjustment. However, appropriate tests to use for count outcomes or under covariate-adjusted models remains unknown. An important setting in which this issue arises is in cluster-randomized trials (CRTs). Because many CRTs have just a few clusters (e.g., clinics or health systems), covariate adjustment is particularly critical to address potential chance imbalance and/or low power (e.g., adjustment following stratified randomization or for the baseline value of the outcome). We conducted simulations to evaluate GLMM-based tests of the treatment effect that account for the small (10) or moderate (20) number of clusters under a parallel-group CRT setting across scenarios of covariate adjustment (including adjustment for one or more person-level or cluster-level covariates) for both binary and count outcomes. We find that when the intraclass correlation is non-negligible ($\geq 0.01$) and the number of covariates is small ($\leq 2$), likelihood ratio tests with a between-within denominator degree of freedom have type I error rates close to the nominal level. When the number of covariates is moderate ($\geq 5$), across our simulation scenarios, the relative performance of the tests varied considerably and no method performed uniformly well. Therefore, we recommend adjusting for no more than a few covariates and using likelihood ratio tests with a between-within denominator degree of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源