论文标题
在K将pell-lucas序列中进行完美的力量
On Perfect Powers in k-Generalized Pell-Lucas Sequence
论文作者
论文摘要
令k> = 2,让(q_ {n}^{(k)})_ {n> = 2-k}是由k-eneralized pell序列定义的 q_ {n}^{(k)} = 2q_ {n-1}^{(k)}+q_ {n-2}^{(k)}+...+...+q_+q_ {n-k}^{(k)} for N> = 2在初始条件下 q _ { - (k-2)}^{(k)} = q _ { - (k-3)}^{(k)} = ... = ... = q _ { - { - 1}^{(k)} = 0,q_ {0} {0}^{(k)^{(k)} = 2,q_} = 2,q_ {1} {1}}^{k {k)} = 2。 在本文中,我们解决了双方方程 q_ {n}^{(k)} = y^{m}在正整数N,m,y,k中,带有m,y,k> = 2。我们表明,该方程的所有解决方案(n,m,y)在正整数n,m,y,k中,使得2 <= y <= 100均由(n,m,y)=(3,2,4),(3,4,2),k> = 3给出。也就是说,q_ {3}^{(k)} = 16 = 2^4 = 4^2 for K> = 3。
Let k>=2 and let (Q_{n}^{(k)})_{n>=2-k} be the k-generalized Pell sequence defined by Q_{n}^{(k)}=2Q_{n-1}^{(k)}+Q_{n-2}^{(k)}+...+Q_{n-k}^{(k)} for n>=2 with initial conditions Q_{-(k-2)}^{(k)}=Q_{-(k-3)}^{(k)}=...=Q_{-1}^{(k)}=0, Q_{0}^{(k)}=2,Q_{1}^{(k)}=2. In this paper, we solve the Diophantine equation Q_{n}^{(k)}=y^{m} in positive integers n,m,y,k with m,y,k>=2. We show that all solutions (n,m,y) of this equation in positive integers n,m,y,k such that 2<=y<=100 are given by (n,m,y)=(3,2,4),(3,4,2) for k>=3. Namely, Q_{3}^{(k)}=16=2^4=4^2 for k>=3.