论文标题

通过无监督的联合学习来检测异常

Anomaly Detection through Unsupervised Federated Learning

论文作者

Nardi, Mirko, Valerio, Lorenzo, Passarella, Andrea

论文摘要

事实证明,联邦学习(FL)是利用分布式资源的最有希望的范式之一,使一组客户能够协作训练机器学习模型,同时保持数据分散。对该主题兴趣的爆炸性增长导致了几个核心方面的快速发展,例如沟通效率,处理非IID数据,隐私和安全能力。但是,假设客户的培训集被标记,大多数FL仅处理监督任务。为了利用分布式边缘设备上的巨大未标记数据,我们旨在通过解决分散设置中的异常检测问题来扩展FL范式到无监督任务。特别是,我们提出了一种新颖的方法,在这种方法中,通过预处理阶段,客户分组为社区,每个社区都具有相似的多数(即较大)模式。随后,每个客户社区都以联合方式训练相同的异常检测模型(即自动编码器)。然后共享所得模型并用于检测加入相应联合过程的同一社区客户端内的异常情况。实验表明我们的方法很健壮,它可以检测社区与理想分区一致的社区,在这种分区中,知道具有相同近距离模式的客户组。此外,性能要比客户专门培训模型在本地数据上训练,并且与理想社区分区的联合模型相当的性能要好得多。

Federated learning (FL) is proving to be one of the most promising paradigms for leveraging distributed resources, enabling a set of clients to collaboratively train a machine learning model while keeping the data decentralized. The explosive growth of interest in the topic has led to rapid advancements in several core aspects like communication efficiency, handling non-IID data, privacy, and security capabilities. However, the majority of FL works only deal with supervised tasks, assuming that clients' training sets are labeled. To leverage the enormous unlabeled data on distributed edge devices, in this paper, we aim to extend the FL paradigm to unsupervised tasks by addressing the problem of anomaly detection in decentralized settings. In particular, we propose a novel method in which, through a preprocessing phase, clients are grouped into communities, each having similar majority (i.e., inlier) patterns. Subsequently, each community of clients trains the same anomaly detection model (i.e., autoencoders) in a federated fashion. The resulting model is then shared and used to detect anomalies within the clients of the same community that joined the corresponding federated process. Experiments show that our method is robust, and it can detect communities consistent with the ideal partitioning in which groups of clients having the same inlier patterns are known. Furthermore, the performance is significantly better than those in which clients train models exclusively on local data and comparable with federated models of ideal communities' partition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源