论文标题

使用知识蒸馏和固定点量化的原位动物行为分类

In-situ animal behavior classification using knowledge distillation and fixed-point quantization

论文作者

Arablouei, Reza, Wang, Liang, Phillips, Caitlin, Currie, Lachlan, Yates, Jordan, Bishop-Hurley, Greg

论文摘要

我们探讨了知识蒸馏(KD)的使用来学习紧凑和准确的模型,从而从可穿戴设备上的加速度计算数据中对动物行为进行分类。为此,我们采用了一个深厚而复杂的卷积神经网络,称为残留神经网络(RESNET)作为教师模型。 RESNET专为多元时间序列分类而设计。我们使用Resnet将动物行为分类数据集的知识提炼成软标签,其中包括每个数据点的每个类的预测伪概率。然后,我们使用软标签来训练我们的复杂学生模型,这些学生模型基于门控复发单元(GRU)和多层感知器(MLP)。使用两个现实世界动物行为分类数据集的评估结果表明,学生GRU-MLP模型的分类准确性通过KD明显改善,接近教师Resnet模型的分类精度。为了进一步减少使用KD训练的学生模型执行推理的计算和记忆要求,我们通过对所考虑模型的计算图进行了适当的修改,利用动态定量量化(DQ)。我们将开发的基于KD的模型的未量化和量化版本实施在我们专门构建的项圈和耳罩设备的嵌入式系统上,以实时和实时对动物行为进行分类。我们的评估证实了KD和DQ在提高原位动物行为分类的准确性和效率方面的有效性。

We explore the use of knowledge distillation (KD) for learning compact and accurate models that enable classification of animal behavior from accelerometry data on wearable devices. To this end, we take a deep and complex convolutional neural network, known as residual neural network (ResNet), as the teacher model. ResNet is specifically designed for multivariate time-series classification. We use ResNet to distill the knowledge of animal behavior classification datasets into soft labels, which consist of the predicted pseudo-probabilities of every class for each datapoint. We then use the soft labels to train our significantly less complex student models, which are based on the gated recurrent unit (GRU) and multilayer perceptron (MLP). The evaluation results using two real-world animal behavior classification datasets show that the classification accuracy of the student GRU-MLP models improves appreciably through KD, approaching that of the teacher ResNet model. To further reduce the computational and memory requirements of performing inference using the student models trained via KD, we utilize dynamic fixed-point quantization (DQ) through an appropriate modification of the computational graph of the considered models. We implement both unquantized and quantized versions of the developed KD-based models on the embedded systems of our purpose-built collar and ear tag devices to classify animal behavior in situ and in real time. Our evaluations corroborate the effectiveness of KD and DQ in improving the accuracy and efficiency of in-situ animal behavior classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源