论文标题

多任务功能和标签空间的联合对齐情绪导致提取

Joint Alignment of Multi-Task Feature and Label Spaces for Emotion Cause Pair Extraction

论文作者

Chen, Shunjie, Shi, Xiaochuan, Li, Jingye, Wu, Shengqiong, Fei, Hao, Li, Fei, Ji, Donghong

论文摘要

情绪引起的提取(ECPE)是情感原因分析的衍生子任务之一(ECA),与情感提取(EE)共享丰富的相关特征(EE)并导致提取(CE)。因此,EE和CE经常被用作更好的特征学习的辅助任务,该任务是通过先前的工作通过多任务学习(MTL)框架建模的,以实现最新的ECPE结果。但是,现有的基于MTL的方法无法同时建模特定特征和介于两者之间的交互作用,或者遭受标签预测的不一致。在这项工作中,我们考虑通过使用新型A^2NET模型执行两种对齐机制来解决上述挑战,以改善ECPE。我们首先提出了一个功能任务对齐方式,以明确对特定的情感和特定特定功能和共享的交互式特征进行建模。此外,还实施了任务跨度的对准,其中,ECPE和EE和CE组合之间的标签距离被缩小了以获得更好的标签一致性。对基准的评估表明,我们的方法在所有ECA子任务上的表现都优于当前最出色的系统。进一步的分析证明了我们提出的一致性机制对任务的重要性。

Emotion cause pair extraction (ECPE), as one of the derived subtasks of emotion cause analysis (ECA), shares rich inter-related features with emotion extraction (EE) and cause extraction (CE). Therefore EE and CE are frequently utilized as auxiliary tasks for better feature learning, modeled via multi-task learning (MTL) framework by prior works to achieve state-of-the-art (SoTA) ECPE results. However, existing MTL-based methods either fail to simultaneously model the specific features and the interactive feature in between, or suffer from the inconsistency of label prediction. In this work, we consider addressing the above challenges for improving ECPE by performing two alignment mechanisms with a novel A^2Net model. We first propose a feature-task alignment to explicitly model the specific emotion-&cause-specific features and the shared interactive feature. Besides, an inter-task alignment is implemented, in which the label distance between the ECPE and the combinations of EE&CE are learned to be narrowed for better label consistency. Evaluations of benchmarks show that our methods outperform current best-performing systems on all ECA subtasks. Further analysis proves the importance of our proposed alignment mechanisms for the task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源