论文标题

从沙普利值到广义添加剂模型,然后返回

From Shapley Values to Generalized Additive Models and back

论文作者

Bordt, Sebastian, von Luxburg, Ulrike

论文摘要

在可解释的机器学习中,当地的事后解释算法和固有的可解释模型通常被视为竞争方法。这项工作通过在沙普利值和广义添加剂模型(GAM)之间建立对应关系来提供部分对帐。我们介绍了$ n $ -Shapley Value,这是一个本地事后解释算法的参数家族,该算法用交互条款说明个人预测,直到$ n $。通过改变参数$ n $,我们获得了一系列解释,涵盖了整个范围从沙普利值到我们要解释的函数的唯一确定的分解。 $ n $ shapley值与该分解之间的关系为Shapley值的功能表征提供了突出的局限性。然后,我们表明$ n $ shapley值以及Shapley Taylor-和Faith-shap互动索引,恢复具有互动条款的GAM,直至订单$ n $。这意味着原始的刻板值恢复了没有可变交互的游戏。综上所述,我们的结果提供了Shapley值的精确表征,因为它们被用于可解释的机器学习。他们还根据基础功能分解提供了对莎普利价值的部分依赖图的原则解释。可以在\ url {https://github.com/tml-tuebingen/nshap}上获得用于估计不同交互索引的软件包。

In explainable machine learning, local post-hoc explanation algorithms and inherently interpretable models are often seen as competing approaches. This work offers a partial reconciliation between the two by establishing a correspondence between Shapley Values and Generalized Additive Models (GAMs). We introduce $n$-Shapley Values, a parametric family of local post-hoc explanation algorithms that explain individual predictions with interaction terms up to order $n$. By varying the parameter $n$, we obtain a sequence of explanations that covers the entire range from Shapley Values up to a uniquely determined decomposition of the function we want to explain. The relationship between $n$-Shapley Values and this decomposition offers a functionally-grounded characterization of Shapley Values, which highlights their limitations. We then show that $n$-Shapley Values, as well as the Shapley Taylor- and Faith-Shap interaction indices, recover GAMs with interaction terms up to order $n$. This implies that the original Shapely Values recover GAMs without variable interactions. Taken together, our results provide a precise characterization of Shapley Values as they are being used in explainable machine learning. They also offer a principled interpretation of partial dependence plots of Shapley Values in terms of the underlying functional decomposition. A package for the estimation of different interaction indices is available at \url{https://github.com/tml-tuebingen/nshap}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源